EXPAND YOUR REACH WITH A COMPLETE UNIQUE ENTITY # **A Peek into the Past** # **Glorious History Replete with Milestones** It all began way back in the 1960's when Electrical & Automation - Lauritz Knudsen, embarked on a momentous voyage and started its controlgear business. Right from the launch of MK series more than 50 years ago, Lauritz Knudsen has been at the forefront of controlgear product development. Over the years, this excellent range has grown in width of its offerings, size, etc. Hence, it comes as no surprise today that Lauritz Knudsen has won the confidence and trust of millions of its customers across the globe. # **Pillars of Support** # Providing Much-needed Support Our extensive range of contactors is further augmented by our range of thermal overload relays, giving reliable protection across diverse applications. MN relays are available from 0.2 to 570A in trip class 10A and 30. Relays can be directly mounted on contactors for space-saving or through separate mounting kits, depending on the requirement. MO contactors along with RTO and REO relays, MNX contactors along with MN relays and MX contactors along with RX relays are perfect examples of these compact motor feeders. # Multi Dimensional Complete Systems # **Adding Value, Assuring Results** Our wide range of accessories has been specifically designed and developed to suit diverse application requirements. From add-on blocks to surge suppressors and mechanical interlock kits to protection shrouds, you name it, we have it. With a wide range of accessories complementing our switchgear products, our controlgear range is the most comprehensive to meet all our customer needs. # **Up and Running, Always** # Less Downtime, more Productivity If downtime is not brought under control, it can spell doom for any industry. This makes reducing down time one of the most important needs of the industry. Equally significant is ease of maintenance. Lauritz Knudsen offers a wide range of spares for its contactors, right from the lowest rating. The contactors are extremely easy to inspect and this coupled with easily replaceable coil and contacts, ensures reduction in downtime and maintenance time. In other words, one can always be assured of high levels of productivity and efficiency. # Range In One Place # **One-Stop Solution for Every Application** Industry requirements are constantly evolving and our clients' demands are ever-increasing. A scenario which may seem as a challenge to many is seen by us as an opportunity to learn and grow. An opportunity to excel in our commitments and exceed customer expectations. Due to our thorough understanding and in-depth knowledge of customer requirements, we make sure that our extensive range of contactors caters to every single customer need. Our contactors are well suited for varied applications such as motor control, capacitor duty switching, single phase applications, supply changeover and many more. In short, we are a one-stop solution for every application. The comprehensive range of controlgear products from Lauritz Knudsen Electrical & Automation is your key to meet every demand and suit every requirement across diverse applications. Whether it is motor control, capacitor switching, supply changeover or any other single phase or three phase application, you can always be assured of finding a perfect solution in our extensive range of contactors. Thermal overload relays with their sensitive mechanism ensure that your system is protected against overloads. Manual Motor Starter combine both overload and short circuit protection In a single compact solution. To complement these products, we also have a wide range of accessories and spares to ensure that support is always at hand. In other words, our controlgear range is a one-stop solution for every application. # **Contents** | Application Notes | 1 | |---------------------------------------|-----| | MO 3 Pole Power Contactors | 37 | | RTO Thermal Overload Relays | 69 | | MNX 2&3 Pole Power Contactors | 85 | | MN Thermal Overload Relays | 111 | | MDX DC Coil 3 Pole Power Contactors | 117 | | ML 3 Pole Power Contactors | 127 | | MX Mini Contactors & Thermal Overload | 135 | | MCX 4 Pole Power Contactors | 143 | | MO C Capacitor Duty Contactors | 163 | | MO 0 Control Contactors | 177 | | Electronic Coil Contactor Range | 183 | | MR Single pole Contactors | 185 | | MU - 2P 2 Pole Contactors | 189 | # **Contents** | Motor Protection Relay | 195 | |---|-----| | REO Electronic Relay MPR200nX/MPR300 MM 10 Relay iMMR Relay | | | MOG Manual Motor Starter | 213 | | MN Industrial Starter | 235 | # **Standards & Approvals** ## Controlgear range comply with the following standards ### IEC 60947-1, EN 60947-1, IS/IEC 60947-1 Low-voltage switchgear and controlgear, Part 1: General Rules ### IEC 60947-4, EN 60947-4, IS/IEC 60947-4 Low-voltage switchgear and controlgear, Part 4: Contractors & Motor starters Third party certificates (ERDA / CPRI) available for Controlgear Product ### **NABL** NABL accreditation is a formal recognition of the technical competence of testing, calibration or medical laboratory for a specific task following ISO/IEC 17025:2005 Standard. Accredited laboratories have the responsibility of satisfying the criteria of laboratory accreditation at all times, which are verified during Surveillance and Reas sessment visits by NABL. Further the accredited laboratories should prove their echnical competence by satisfactory participation in recognized Proficiency Testing Programmes. Lauritz Knudsen's Switchgear Testing Lab is NABL accredited subject to continued satis factory compliance to above standard & additional requirements of NABL. The Product are tested in Lauritz Knudsen's NABL accredited Switchgear Testing Lab Controlgear A CE marking is a European marking of conformity that indicates a product complies with the essential requirements of the applicable European laws or directives with respect to safety, health and environment and consumer protection. Generally, this conformity to the applicable directives is done through self-declaration and is require don products in the countries of the European Economic Area (EEA) to facilitate trade among the member countries. The manufacturer or their authorized representative established in the EEA is responsible for affixing the CE marking to their product. The CE marking provides a means for a manufacturer to demonstrate that a product complies with a common set of laws required by all countries in the EEA to allow free movement of trade within the EEA countries. Lauritz Knudsen's conform to the Low voltage directive 73/23/EEC as amended by directive 93/68/EEC, provided it is used in the application for which it is made and is installed and maintained in accordance with professional practices with relevant installation standards and operating instructions. Controlgear range ## **RoHS Compliance** As a green initiatives, Lauritz Knudsen Electrical & Automation understands the requirements of the RoHS directive. The directive restricts the use of hazardous substances in electrical and electronic equipment and bans electrical equipment containing more than permitted levels of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyl (PBS) and polybrominated diphenyl ether (PBDE) flame retardants. ## **Application Notes** Our comprehensive library of Application notes will help you optimize your selection of Controlgear products. These include short technical notes giving a brief description of a specific development, technique or procedure and it will guide for specific switchgear selection for different applications. The main criteria for publication will be the novelty of concepts involved, the validity of the technique and its potential for such applications. ## TITLE AND PAGE NUMBER AS PER XTRA PAGE | Utilization Categories | 1 | |---|----| | Co-ordination under Short-circuit conditions | 4 | | Standard Coil Voltages and their Applications | 7 | | Importance of using Surge Suppressor | 9 | | Contactor selection for 60 Hz control supply applications | 13 | | Selection of Contactors for AC-4 (Crane Duty) Applications | 15 | | Contactor Selection for Motor with long starting time | 18 | | Control Transformer sizing for contactor actuation | 21 | | Application Guide for Reduced Voltage Autotransformer Starter | 27 | | Length of control cables | 31 | | Detailed Selection guide for lightening circuit | 34 | | | | Contactors are most commonly used in applications concerning control of electric motors. They are used to start, stop, reverse, jog and plug the motors depending upon the application requirement. Contactors along with thermal overload relays also provide protection to the motor against The most basic data required for contactor selection is the motor HP rating and it's rated current. However this data is alone not sufficient. The type of load, duty cycle of the load, switching frequency are some of the factors that influence contactor selection. The switching capability of contactors is majorly dependent on the type of application, and hence international standards (IEC 60947-4-1) specify utilization categories which cover a broad range of applications. These utilization categories and the data associated with them are used by manufacturers to establish contactor ratings. ## The utilization categories as per IEC 60947-4-1 | Kind of
Current | Utilization
Categories | Additional
Category
Designation | Typical Load | |--------------------|---------------------------|---------------------------------------|--| | | AC - 1 | General use | Non-inductive or slightly inductive loads | | | AC - 2 | | Slip-ring motors or mixed resistive and inductive loads,
including moderate overloads | | | AC - 3 | | Squirrel-cage motors: starting, switching off motors during running, reversing | | | AC - 3e | | Squirrel-cage motors with higher locked rotor current : starting, switching off motors during running, reversing | | | AC - 4 | | Squirrel-cage motors d: starting, plugging, inching | | | AC - 5a | Ballast | Discharge lamps | | AC | AC - 5b | Incandescent | AC incandescent lamps | | | AC - 6a | | Transformers | | | AC - 6b | | Capacitor banks | | | AC - 7a | | Slightly inductive loads for household appliances and similar applications | | | AC - 7b | | Motor-loads for household applications | | | AC - 8a | | Hermetic refrigerant compressor motor control with manual resetting of overload releases | | | AC - 8b | | Hermetic refrigerant compressor motor control with automatic resetting of overload releases | | | AC - 15 | | Control of AC electromagnetic loads | | | DC - 1 | | Non-inductive or slightly inductive loads | | | DC - 3 | | Shunt-motors: starting, plugging, inching, dynamic breaking of DC motors | | DC | DC - 5 | | Series-motors: starting, plugging, inching, dynamic breaking of DC motors | | | DC - 6 | Incandescent | DC incandescent lamps | | | DC - 13 | | Control of DC electromagnetic loads | MO platform provides switching solutions for all utilization categories mentioned above. ## AC-1 Contactors with an AC-1 rating are intended for applications involving switching of non-inductive or slightly inductive loads. Heating, lighting, switching of power supply in a power panel etc are some of the examples of AC-1 loads. Contactors with an AC-2 rating are intended for applications involving switching of Slip-ring motors or mixed resistive and inductive loads, including moderate overloads. Some cranes use slip-ring motors. ### AC-3 Contactors with an AC-3 rating are intended for switching of Squirrel-cage motors. The contactor must withstand the high starting current of the motor during making. The breaking will be at rated current of motor during running condition. These contactors can also be used in reversing applications. AC-3 category may be used for occasional inching (jogging) or plugging for limited time periods such as machine set-up. During these limited time periods, the number of such operations should not exceed 5 per minute or more than 10 in a ten minute period. Some examples of this application are Compressors, Pumps, Fans, Conveyors, Mixers, Agitators, Air conditioners, Elevators etc #### AC-3e Contactors with an AC-3e rating are intended for switching of high efficiency Squirrel-cage motors. The contactor must withstand higher locked rotor current of Squirrel-cage motors as compared to motors in AC-3 applications. #### AC-4 Contactors with an AC-4 rating are intended for switching of Squirrel-cage motors. The contactor must withstand the high starting current of the motor during making. The breaking will also be at high starting current of motor as it is used in inching or plugging applications. Some examples of this application are Printing presses, Wire drawing machines, Centrifuges etc The conditions are as given below, Table (a): | Normal Operation | | | | | | | | |------------------------|-------------|-----------------|-------|---------------|---------------------------|-----------|--| | Utilization categories | Maki | ng Condi | tions | Brea | aking Co | onditions | | | | I_c / I_e | U_{r} / U_{e} | cosØ | $I/I_{\rm e}$ | $\mathrm{U}/\mathrm{U_e}$ | cosØ | | | AC - 1 | 1 | 1 | 0.8 | 1 | 1 | 0.95 | | | AC - 2 | 2.5 | 1 | 0.65 | 2.5 | 1 | 0.65 | | | AC - 3 / AC - 3e | 6 | 1 | 1) | 1 | 0.17 | 1) | | | AC - 4 | 6 | 1 | 1) | 6 | 1 | 1) | | 1) For le < 17A $\cos \emptyset$ = 0.65, For le>17A $\cos \emptyset$ = 0.35 ### Where; I_e = Rated Operational Current U_e = Rated Operational Voltage U_r = Recovery Voltage $I_{\rm c}$ = making and breaking current ## Utilization categories most encountered in contactor applications are AC-3 and AC-4 The making and breaking capacities of contactors are dependent on the utilization categories and the standard specifies that the contactors or starters shall be capable of making and breaking currents without failure under the conditions stated. Table (b): | Occasional Operation (50 Operating cycles) | | | | | | | | |--|---------------------------|---------------------------|---------|---------------|------------------|----------|--| | Utilization categories | Mal | king Con | ditions | Breal | king Co | nditions | | | | $I_{\rm c}$ / $I_{\rm e}$ | $U_{\rm r}$ / $U_{\rm e}$ | cosØ | $I/I_{\rm e}$ | $\mathrm{U/U_e}$ | cosØ | | | AC - 1 | 1.5 | 1.05 | 0.8 | 1.5 | 1.05 | 8.0 | | | AC - 2 | 4 | 1.05 | 0.65 | 4 | 1.05 | 0.65 | | | AC - 3 | 10 | 1.05 | 1) | 8 | 1.05 | 1) | | | AC - 3e | 13 | 1.05 | 1) | 8.5 | 1.05 | 1) | | | AC - 4 | 12 | 1.05 | 1) | 10 | 1.05 | 1) | | 1) For $17A < Ie < 100A \cos \emptyset = 0.45$, For $Ie > 100A \cos \emptyset = 0.35$ ### **Selection Criteria** The starting current of a squirrel cage induction motor is 6 times while that of slip ring induction motor is 2.5 times the rated current. Starting current in slip ring induction motor is less because of the higher rotor resistance in the rotor circuit, which can be effectively removed in steps as the motor attains its rated speed. From the above **Table (a)** it can be seen that, for AC-3 / AC-3e utilization category during normal operation the contactor must be capable of making 6 times the rated current. The current that contactor must break, however remains the rated current. This is because the AC-3 / AC-3e utilization category specifies that the motor is switched off after it starts running. In the case of AC-4 utilization category, the current, the contactor must be capable of making as well as breaking remains 6 times the rated current. This is because AC-4 utilization category involves plugging and inching operations, in which the motor is switched on and off frequently. Hence it can be concluded that AC-4 utilization category is more severe than AC-3 / AC-3e and the switching capability of contactors (Operating cycles/Hr) for AC-4 is lower than that of AC-3 / AC-3e. **Table (b)** specifies the values of currents the contactor must be capable of making or breaking under abnormal conditions which occur occasionally. Here also it can be concluded that AC-4 utilization category is the most severe among all the other utilization categories. Also it can be seen that making and breaking capacities for AC-4 category is more than that of AC-3 / AC-3e, clearly highlighting that AC-4 is severe than AC-3 / AC-3e. ## **Selection Example** Contactor must be selected such that the making and breaking capacities during both normal as well as abnormal conditions must be within contactor making and breaking capacity. Motor Operation in AC-3 Utilization category - Normal Operation - » Making current of the contactor = 6In = 90A - » Breaking current of the contactor = In = 15A - Abnormal operation - » Making current of the contactor = 13In = 195A - » Breaking current of the contactor = 8.5In = 127.5A Hence, in both cases, we can select MO18 which has Rated Current of 18A, Making Capacity of 450A and Breaking Capacity of 350A which is higher than the abnormal making and breaking currents calculated above. Consider a 10 HP squirrel cage Induction motor with Direct On-Line (DOL) starting. Rated Current of the motor In = 15A ### Motor Operation in AC-4 Utilization category - Normal Operation - » Making current of the contactor = 6In = 90A - » Breaking current of the contactor = 6In = 90A - Abnormal operation - » Making current of the contactor = 12In = 180A - » Breaking current of the contactor = 10In = 150A #### AC-5A Contactors with an AC-5A rating are intended for applications involving the direct control of electric discharge lamps or other non-motor loads. These contactors are engineered to handle the unique characteristics of inductive loads associated with lighting systems, such as ballasts. #### AC-5B The AC-5B rating for contactors designates their suitability for applications involving the direct control of incandescent lamps. #### AC-6A Contactors with AC-6a rating can be used for switching transformers. Such contactors require high inrush current withstand capability as such currents are expected when switching transformer. #### AC-6b Contactors with AC-6b rating are intended for switching capacitor banks. As there is very high switching surge during switching of capacitors, the contactors are fitted with early make contacts along with current limiting resistors to limit the surge current. Capacitor duty contactors with such resistor blocks have been developed in the MO platform. They are called MOC contactors. Ac-6b rating are available in technical specifications of MOC capacitor duty contactors. #### AC-7a Contactors with AC-7a ratings can be used for slightly inductive loads for household appliances and similar applications. Modular contactors with AC-7a utilization categories are available. #### AC-7b Contactors with AC-7b ratings can be used for Motor-loads for household applications. Modular contactors with AC-7b utilization categories are available. #### AC-8A This category is specifically for contactors designed for use in Hermetic refrigerant compressor motor control with manual resetting overloads. A hermetic refrigerant compressor motor is a combination consisting of a compressor and a motor, both of which are enclosed in the same housing, with no external shaft or shaft seals, the motor operating in the refrigerant. #### AC-8B This category is for contactors used in Hermetic refrigerant compressor motor control with automatic resetting overloads. These utilization categories help in the selection and application of contactors based on the specific nature of the load and the operational requirements, ensuring that the contactors are appropriately matched to the intended use, thus promoting
safety and optimal performance. Understanding these ratings is crucial for selecting the right contactor for an application, as it ensures that the contactor can handle the specific electrical loads and operational conditions it will encounter. | Rating | AC-1
(A) | AC-2
(A) | AC-3
(A) | AC-3e
(A) | AC-4
(A) | AC-5a
(A) | AC-5b
(A) | AC-6a
(A) | AC-8a
(A) | AC-8b
(A) | |--------|-------------|-------------|-------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------| | MO 9 | 30 | 9 | 9 | 9 | 9 | 9 | 9 | 4 | 12 | 11.5 | | MO 12 | 32 | 12 | 12 | 12 | 12 | 12 | 12 | 5 | 16 | 15.5 | | MO 18 | 32 | 18 | 18 | 18 | 18 | 18 | 18 | 8 | 22 | 23.5 | | MO 25 | 45 | 25 | 25 | 25 | 25 | 25 | 25 | 11 | 30 | 32.5 | | MO 32 | 50 | 32 | 32 | 32 | 32 | 32 | 32 | 14 | 40 | 41.5 | | MO 40 | 50 | 40 | 40 | 40 | 40 | 40 | 40 | 18 | 50 | 52 | | MO 45 | 50 | 45 | 45 | 45 | 45 | 45 | 45 | 20 | 55 | 58.5 | | MO 50 | 100 | 50 | 50 | 50 | 50 | 50 | 50 | 22 | 63 | 65 | | MO 60 | 100 | 60 | 60 | 60 | 60 | 60 | 60 | 26 | 73 | 78 | | MO 70 | 100 | 70 | 70 | 70 | 70 | 70 | 70 | 30 | 85 | 91 | | MO 80 | 125 | 80 | 80 | 80 | 80 | 80 | 80 | 35 | 95 | 104 | | MO 95 | 125 | 95 | 95 | 95 | 95 | 95 | 95 | 42 | 120 | 123.5 | | MO 110 | 140 | 110 | 110 | 110 | 110 | 110 | 110 | 50 | 140 | 143 | | MO 140 | 250 | 140 | 140 | 140 | 140 | 140 | 140 | 63 | 165 | 182 | | MO 185 | 275 | 185 | 185 | 185 | 185 | 185 | 185 | 83 | 220 | 240.5 | | MO 225 | 275 | 225 | 225 | 225 | 225 | 225 | 225 | 101 | 270 | 292.5 | | MO 250 | 400 | 250 | 250 | 250 | 250 | 250 | 250 | 113 | 300 | 325 | | MO 300 | 500 | 300 | 300 | 300 | 300 | 300 | 300 | 135 | 360 | 390 | All the above ratings are at operational voltage of 415V. AC-15 and DC-13 ratings are available in technical specifications of MO0 control contactors. Modular contactors with AC-7a and AC-7b utilization categories are also available. # Co-ordination under short-circuit conditions Motors are the backbone of the industry. Their use is also increasing in commercial establishments. Hence, Protection of motor is extremely important so as to keep these processes functioning safely and continuously. The main purpose of motor protection system is to prevent excessive temperature built up in the windings because of over-current and short-circuit current. Following are the reasons for over-current. - Overloading. - > Singlephasing. - Over-voltage. IEC 60947-4-1:2023 require that the thermal overload relay and SCPD are co-ordinated to ensure that they operate satisfactorily under all load and fault conditions. Following aspects need to be considered to achieve proper co-ordination. - > Discrimination between thermal overload relay & SCPD. - > Adequacy of short circuit protection. ### What is co-ordination? Co-ordination means matching the characteristics of SCPD and down stream equipment to ensure that the let-through energy and peak cut-off current do not rise above the levels that the circuit can withstand. Improper co-ordination can lead to - → High electro-dynamic force (magnetic force Ipeak²). - High thermal stress leads to excessive heat (I²t letthrough). - Nuisance tripping/operation of SCPD under small overloads, leading to reduced life of SCPD. - Nuisance tripping of SCPD during motor starting. - > Nuisance tripping of SCPD during transient conditions like open transition star delta starter starting. As per the standard two types of co-ordination are permissible, Type "1" and "2". Type "1" co-ordination requires that under short-circuit conditions, the contactor or the starter shall cause no danger to persons or installation. The motor feeder may not be suitable for further service without repair and replacement of parts (Not remaining suitable is NOT a requirement and hence you may find separating in a different sentence could avoid possibility of misconception) Type "2" co-ordination requires that under short-circuit conditions, the contactor or the starter shall cause no danger to persons or installation and shall be suitable for further use. However contact welding is recognized. Also the time-current characteristics of the over load protection device should not change. This in other words means safety, low down time and continued protection. Recommended combination needs to be proven through short-circuit tests at - > Prospective current "r" - Conditional short-circuit current Iq. Test at Prospective current "r" is done to verify the performance under fault conditions practically possible at the motor feeder end. These faults are normally associated with the motor and the associated feeder. Prospective current "r" is specified according to the rated operational current (le, AC-3) of the feeder. If the motor feeder is not specified according to utilization category AC-3, the prospective current "r" shall correspond to the highest rated operational current for any utilization category claimed by the manufacturer. The values are mentioned below. The values are mentioned below. ## Value of the prospective test current according to the rated operational current | Rated operational current le (A) | Prospective current "r" (kA) | |---|---| | le <= 12 | 1 | | 12 < le <= 50 | 3 | | 50 < le <= 100 | 5 | | 100 < le <= 250 | 10 | | 250 <le <="500</td"><td>18</td></le> | 18 | | 500 < le <= 800 | 30 | | 800 < le <= 1300 | 42 | | 1300 < le | Subject to agreement between manufacturer and user. | # **Co-ordination under short-circuit conditions** Test at Conditional short-circuit current Iq is carried out to verify the performance under system level faults. Iq is declared by the manufacturer. This is the maximum fault current that the feeder can withstand. Generally the declared value of Iq is 50 kA. ### Trends in motor feeder protection - > Fuse protection with S-D-F - > Fuseless protection with MCCB and MMS S-D-F, which incorporates H.R.C fuses, is the most efficient and popular in the industry. S-D-F, like conventionalfuse-switch units, is capable of switching and protecting electrical circuits. In addition these are also suitable for isolating down stream equipment. MCCB was primarily used for protection of distribution circuits. However, with the development of current limiting MCCBs, it has become possible to employ MCCBs in motor feeders also. With the availability of various accessories, MCCB as SCPD offers several advantages. MMS can be used in two ways. It can be used directly for switching of a motor. This is very cost effective. However downside is limited electrical life of MMS compared to that of a contactor. Moreover, a separate undervoltage protection is required. Alternately, MMS can be used along with a contactor. Since, MMS combines thermal as well as short circuit protection, it will trip and interrupt even small overloads (which otherwise could be interrupted by a contactor). Typical DOL Motor Feeder with S-D-F Co-Ordination with S-D-F Typical DOL Motor Feeder with MCCB Co-ordination with MCCB # **Co-ordination under short-circuit conditions** ### Typical DOL Motor Feeder with MMS ### **Open and Close Transition Star-Delta Starting** For Star-Delta motor feeders, the motor winding is connected in star. When it reaches a certain speed the motor winding connection is changed to delta. In case of Open transition from star to delta, there is some time difference between opening of the star contactor and closing of the delta contactor. During this period there is no voltage across the motor terminal and the motor will momentarily act as a generator. When the delta contactor closes, full line voltage appears across the motor terminal. If the motor emf and the line voltage add up, the transient current peaks may reach up to 18In. Also the motor will experience a jerk, which in some cases may be critical. In case of open transition star-delta starting (most common practice), it's an established fact that the transient current peaks during change-over from star to delta are in the order of 18 times the line current (In). As the maximum magnetic threshold of a MMS is 14In and as it is a current peak sensing device, such conditions will definitely lead to nuisance tripping of MMSs during change-over from star to delta mode. Both the above facts i.e. 18 times transient peak and nuisance tripping of MMS have been verified through inhouse tests as well. #### Co-ordination with MMS Hence, to avoid nuisance tripping, it is technically correct to increase the MMS rating for star/delta starting so that the ratio of instantaneous release setting to the motor full load current is at least 18. However, this will lead to loss in thermal overload protection offered by the MMS (as the MMS rating will be higher than the full load current of the motor). This aspect can be addressed by providing an additional thermal overload relay in the phase circuit. In case of close transition, the change over from star to delta will take place through three resistors. These resistors do not allow full line voltage to appear across the motor terminal and also there will be no break in the supply to the motor. Hence, there will be no jerk to the motor and transient current peaks will also get eliminated. ## Summarising Effective motor protection should protect motor and the associated feeder against any overcurrent including short circuit current. More and more users demand Type '2' coordination because it helps to ensure a safe working environment. In view of down times and maintenance costs, though Type '2' co-ordination has higher initial costs, in the long term will prove economical. Manufacturer having all the products in its product portfolio is better place to recommend the combinations for proper Type '2' co-ordination. # Standard Coil Voltages and their Applications ## Standard Coil Voltage Ratings used in India #### 240V Coils with rated voltage of 240V are
the most widely used coils in Industrial and commercial applications. 240V single phase-neutral supply can be easily derived from a 415V Three Phase Four Wire system by connecting across one phase and neutral point (415/√3=240). Since this distribution system is prevalent across many industrial applications, 240V coils find their application in majority of contactor applications. Common applications are industrial motor feeder systems. Also, in most of the industrial installations voltage values are quite stable and variations are limited. Hence in such systems with very less voltage fluctuations, it is viable to go for 240V coil with a standard coil band of 80% to 110% of rated coil voltage. #### 220V 220V coils are generally preferred in applications where the available supply is slightly less than the rated voltage of 240V. In such applications it is advisable to go for a 220V coil because one gets a lower value of pick up voltage as compared to 240V. For example for a 240V coil the coil band would be 156 - 288V. If one goes for a 220V coil then the available coil band is 143 - 264V. This takes care of the slight fluctuation in voltage which is below the band specified for 240V or a consistent low voltage. ### 415V 415V coils are used when there is a possibility of neutral floating condition affecting contactor operation. Neutral floating arises when the neutral is not properly grounded or ground connection is completely broken. Conventional distribution systems are three phase four wire systems in which individual single phase systems are derived from a three phase supply. In such cases the neutral is grounded and ideally must be at zero potential. In a perfectly balanced three phase four wire systems, loss of neutral conductor will not cause any abnormal voltage variation on connected single phase loads. However this condition is extremely rare and there is always some current flowing through the neutral owing to imbalances in the single phase loads. In such a scenario a loss of neutral will lead to abnormal voltage variations across the connected single phase loads. The extent of voltage variation will depend on the extent of unbalance in the single phase loads. However the imbalance in voltages will not affect the line voltages and they will continue to be at 415V. In such a scenario if one used 240V coils then they may get damaged due to over voltage condition arising out of neutral floating. This problem can be efficiently eliminated by going for 415V coils as neutral floating condition does not affect the line voltages. Hence the issue of coil burning due to neutral floating is completely eliminated. Improper neutral grounding can lead to voltage rise and hence going for 415V coils is advisable. Hence for all changeover application involving four Pole contactors (MCX Range) it is recommended to go for 415V coils. But, it should be noted that the allowable control cable length due to cable capacitance is lowest at 415V. (Refer application note: Guidelines on control cable lengths dated 12/07/2012) #### 360 or 380V These coil voltages are mainly used in agricultural applications. In agriculture applications even though the rated secondary of transformer is 415V, because of simultaneous running of loads leading to sustained voltage drop and absence of voltage stablilizers, many of the users get voltages in the range of 360-380V. Since this voltage levels are much lower than 415V special coils of 360 or 380 volts have to be designed specifically for agricultural applications. These coils are restricted to applications where it is known that reduced voltage is available. These coils don't find their applications in industrial applications where voltage supply is as per rated and stable. The choice of 360V and 380V coils can be based on how low the supply voltage can dip to in that particular installation. It is also to be noted that in such installation Phase to neutral voltage connection is not preferred for coil voltages, due to the possible problem of neutral floating. # Standard Coil Voltages and their Applications #### 440V These coil voltages are mainly used in Industrial applications, and there are chances of failure of coils due to sustained high voltages These coils are restricted to applications where it is known that higher voltage is available. These coils don't find their applications in industrial applications where voltage supply is rated and stable. ### 110V 110V coils are generally used in applications where one wants to prevent any unauthorized start of the contactor. For example in many applications, operating personnel tend to override the contactor drop command given by a Distributed control system (DCS). This is mainly done by using easily available 240V single phase supply to on the contactor. However if one uses 110V coils, it acts as an efficient deterrent against overriding DCS commands as 240V supply to an 110V coil will damage the coil beyond repair. This acts as an efficient safety feature in the system. It also efficiently isolates the coil supply from the main supply through a control transformer. 110V 60Hz supply is also used mainly in western countries as 110V is much safer to operating personnel as compared to 240V. Also it should be noted that the allowable control cable length due to cable capacitance is highest at 110V. (Refer application note: Guidelines on control cable lengths dated 12/07/2012) #### 24V DC 24V DC coils are mainly used in automation applications and in contactors which are used along with backup supplies. In many process industries having the entire control through PLC one finds applications of 24V DC coil contactors as 24V DC is predominantly required for PLC. Some of the contactors have low coil consumption coils and can be directly actuated by the PLC without the use of an interface relay. PLC output, generally being 24V DC, DC coil voltage is required. 24V DC Coils are also largely used in battery backed up systems and UPS applications. For example, in power plant a lot of critical equipment is kept on backup supply where actuation is done through a DC coil contactor, 24 V DC being the most widely used. | Coil Voltage | Application | Caution | |----------------|--|---| | 240V AC | Most commonly used coil voltage | Limitation where pickup at low voltage is required | | 220V AC | Used where voltage fluctuation on lower side.
Can pick up at lower voltage | Overvoltage withstand will be limited as band shifts to lower side | | 415V AC | Ideal for DG applications, there is a chance of neutral floating | Allowable control cable length reduces | | 360 or 380V AC | To be used in agricultural applications, where undervoltage is prevalent | Overvoltage withstand will be limited as band shifts to lower side | | 440V AC | Used where voltage fluctuation on higher side.
Better withstand at sustained high voltage | Pick up at lower side gets limited as band shifts to higher side | | 110V AC | Provides separation between control voltage and common available single phase supply. | Separate control transformer is needed which makes it expensive | | 24V DC | Used in PLC applications or Automation systems, Eliminates need for interposing relay | Expensive due to high cost of DC Coils and limitations of NC contacts | # **Importance of using Surge Suppressor** ## Cause of voltage surges in the system Surge Suppressors are mainly used to suppress the voltage spikes or surges that occur whenever any inductive load is de-energized. A general schematic of a contactor and load is shown below. The contactor is operated by an electromagnetic coil which is energized to close the contacts and de-energized to open them. Overload Protection Three PhaseMotor A Contacts Operated by Contactor Coil Contacts Contacts Contacts Contacts Contacts ## Effects of voltage surges on the system This voltage spike generated in the system has the potential to propagate to other components connected to the same supply system. If the surge is not suppressed on time it will damage any sensitive electronic components connected to the system. Also if any counters or logic circuits are present in the system then the voltage spike will cause them to change state momentarily, giving erroneous outputs. It may also damage the ICs beyond repair. Hence it is very much imperative that the voltage spike is effectively dampened by absorbing the energy associated with it. This is where a surge suppressor comes into the picture. When the coil is de-energized its electromagnetic field collapses and being an inductive load it opposes this sudden change by producing an Electromotive Force (EMF) given by, $$E = L \frac{di}{dt}$$ This is because the absolute change in current is very high and in a short duration of time. This coupled with high inductance of the coil produces a voltage spike in the system. This voltage spike is of the order 8 to 10 times of the rated coil voltage i.e. for a coil of rated voltage 240V AC the voltage surge can reach a value of around 2kV. A typical surge characteristic is shown below, Contactor switched off # **Importance of using Surge Suppressor** ## **Mitigating Voltage Surges** As we have seen above it is very necessary to clamp down the voltage spike as it produces damaging effects for electronic components in the system. A surge suppressor is a device which is connected in parallel with the coil. During normal operation the suppressor does not conduct as the supply voltage is much below its breakdown voltage. When a switching surge is generated the device starts conducting providing a parallel path to the excess current. This prevents the surge from propagating in the system and at the same time the spike is effectively suppressed. The device then automatically resets when the overvoltage goes away. This can be
clearly understood by the schematic given below, 5 mA Current Source Ideal Protection Device Source Frotected Source Source Source Frotection Device Protected Now let us see the different types of surge suppressors In the normal mode, the device being protected doesn't experience voltage or current surge eventsso the ideal protection device remains open. If there is a voltage or current surge, the ideal protection device becomes a perfect short-circuit path to ground to protect the load. Just as de-energization of contactor coil produces a voltage spike, external voltage surges in the system can also be damaging to the coil. In case of electronic coils like those in MNX 550-650 & MCX 45/46/47, And Universal AC/DC wide band coils of MO 140 - 300 external surges in the system may also damage the sensitive electronic components. In such cases a surge suppressor also protects the coil from external voltage surges. ## **Types of Surge Suppressors** #### **RC Surge Suppressor** RC surge suppressor is a resistor-capacitor in series combination which is in turn connected in parallel with the coil. The capacitor absorbs the energy associated with voltage spike and the resistor controls the charging of the capacitor. The values of resistor and capacitor are adjusted so as to provide efficient surge suppression. ### **Advantages** - > Can be used with AC as well as DC circuit. - > Low cost - > Simple construction MNX surge suppressors used with MNX contactor coils are RC surge suppressors MNX RC Surge Suppressor # Importance of using Surge Suppressor ## **Metal Oxide Varistor (MOV)** A Metal Oxide Varistor (MOV) as the name suggests it is a voltage dependent resistor. The result is that an MOV has a high resistance at low voltage and a low resistance at high voltage. The varistor is connected in parallel with the coil and only conducts when the voltage across it is beyond the clamping voltage. Thus when a surge occurs the varistor offers a low resistance path and efficiently discharges the surge. However the follow through current resulting due to a voltage strike gradually degrades the varistor and hence MOVs degrade from repeated exposure to surges. MOV Symbol Metal Oxide Varistors ### **Advantages** - > No resonance. - > Usage in AC and DC circuit - > Superior price to performance ratio - Caacity to conduct large surges MOV surge suppressors are in-built in Electronic coils of MNX 550/650 and MCX 45/46/47 And Universal AC/DC wide band coils of MO 140 - 300. ## **Transient voltage suppression diode (TVS)** The operating principle of a TVS diode is similar to that of a MOV. The device operates by providing a parallel path to the excess current when the voltage goes beyond its avalanche potential i.e. when a voltage surge occurs. At all other voltages below its clamping voltage the diode acts as an open circuit. TVS diodes are available in both unidirectional and bidirectional versions. The response time of a TVS diode is much faster than a MOV and hence it provides an efficient suppression against fast and damaging voltage transients. Also unlike MOV a TVS diode is not degraded by surges within its rating. However TVS has a relatively lower energy absorbing capability as compared to a MOV. Hence TVS diodes are generally preferred for circuits with smaller current spikes. TVS Bidirectional diode symbol TVS Diodes ### **Advantages** - Optical Muffling - > Faster response time - > No device degradation after prolonged use - No change in breakdown potential MX DC Power contactors, MX0 control contactors, MO DC Power contactors and MO0 control contactors have in built diode surge suppressors. # Following is the comparison between TVS diode and two MOVs of different specifications TVS Diodes have a significantly lower clamping voltage than the MOVs As mentioned above MOV gets degraded due to repeated exposure to surges. This degradation greatly impacts the leakagecurrent, with varistor becoming more resistive after each over voltage while TV Sdiode shows no such degradation. Device degradation also causes a shift in the breakdown voltage VBR. MOVs show a reduction in VBR after each surge event while no such shift is observed in TVS diode. # **Contactor selection for 60 Hz control supply applications** Contactor coils were mostly designed for 50 Hz supply frequency as Indian power system typically operates at 50Hz However we do get requirement for 60 Hz coils are required for the international market. In Therefore, now 60 Hz rating are now marked on most of our coils as shown in the table below. | Range | Rated coil voltage | % Pick up band @50 Hz | % Pick up band @60 Hz | | |---------------|--------------------|-----------------------|-----------------------|--| | | 110 V 50/60 Hz | | | | | MNX 9 - 32 | 220 V 50/60 Hz | 65-120 | 85-120 | | | MINA 9 - 32 | 240 V 50/60 Hz | | 85-120 | | | | 415 V 50/60 Hz | | | | | | 110 V 50 Hz | | | | | | 132 V 60 Hz | | | | | | 220 V 50 Hz | | | | | MNX 40 - 650 | 264 V 60 Hz | 80-110 | 80-110 | | | WINA 40 - 050 | 240 V 50 Hz | 00-110 | 00-110 | | | | 288 V 60 Hz | | | | | | 415 V 50 Hz | | | | | | 498 V 60 Hz | | | | | Range | Rated coil voltage | % Pick up band @50 Hz | % Pick up band @60 Hz | | | |---------------|--------------------|-----------------------|-----------------------|--|--| | | 110 V 50/60 Hz | | | | | | MCX 01-04 | 220 V 50/60 Hz | 55-120 | 75-120 | | | | WCX 01-04 | 240 V 50/60 Hz | 33-120 | 75-120 | | | | | 415 V 50/60 Hz | | | | | | | 110 V 50 Hz | | | | | | | 132 V 60 Hz | | | | | | | 220 V 50 Hz | | | | | | MCX 11 - 47 | 264 V 60 Hz | 80-110 | 80-110 | | | | IVICA II - 41 | 240 V 50 Hz | 00-110 | 00-110 | | | | | 288 V 60 Hz | | | | | | | 415 V 50 Hz | | | | | | | 498 V 60 Hz | | | | | # **Contactor selection for 60 Hz** control supply applications | Range | Rated coil voltage | % Pick up band @50 Hz | % Pick up band @60 Hz | |-----------|--------------------|-----------------------|-----------------------| | | 24 V 50/60 Hz | | | | | 42 V 50/60 Hz | | | | | 48 V 50/60 Hz | | | | | 110 V 50/60 Hz | 65-110 | 85-110 | | | 220 V 50/60 Hz | | | | MO 9 - 45 | 240 V 50/60 Hz | | | | | 320 V 50/60 Hz | | | | | 360 V 50/60 Hz | | | | | 380 V 50/60 Hz | | | | | 415 V 50/60 Hz | | | | | 525 V 50/60 Hz | | | | Range | Rated coil voltage | % Pick up band @50 Hz | % Pick up band @60 Hz | |-------------|--------------------|-----------------------|-----------------------| | MO 50 - 300 | 24 V 50/60 Hz | | 85-110 | | | 42 V 50/60 Hz | 75-110 | | | | 48 V 50/60 Hz | | | | | 110 V 50/60 Hz | | | | | 220 V 50/60 Hz | | | | | 240 V 50/60 Hz | | | | | 320 V 50/60 Hz | | | | | 360 V 50/60 Hz | | | | | 380 V 50/60 Hz | | | | | 415 V 50/60 Hz | | | | | 525 V 50/60 Hz | | | # Selection of Contactors for AC-4 (Crane Duty) Applications ## **Application Brief** Crane duty application is an example of AC-4 utilization category where the contactor is subjected to severe inching operations. This is the case when the motors are used in DOL configuration without Variable frequency drives for speed and torque control. As such, Crane duty application is one of the most severe applications greatly straining the contactor. In the earlier days Slip ring motors dominated crane duty applications. However nowadays we find both squirrel cage as well as slip ring induction motors being used for crane applications. With advent of Variable frequency drives providing efficient Speed and torque control, the application becomes less severe for the contactors. This is because all the switching needs are taken care by the VFD and the contactor can be selected as per AC-1 utilization category. However VFD is a costly proposition and in price driven markets like India, many still prefer to use contactors in conventional configuration for their crane duty applications. This application notes explains how one should go about selecting the contactors when VFD is not into the picture. In such a scenario the contactor is expected to undergo severe inching operations and hence life of the contactor becomes paramount selection criteria. ## Selection of contactors based AC-4 Current Rating and Electrical Life Curves As emphasized above, the life of the contactor is an important parameter and one must be clear about the life One expects from the contactors when used for crane duty applications. Most of the crane duty manufacturers would expect a certain fixed amount of life and this would then guide their contactor selection. Power contactors usually have an AC-4 rating mentioned in the product catalogue. However the electrical life given in Life curves is also an important criterion which influences contactor selection. For example. Consider MO32 Power Contactor. The rated AC-4 current of MO32 is 32A. The Electrical life of MO 32 at 32A AC-4 is 50000. When a 32A contactor is used for 32AAC-4 application, one gets an operation life of 50000 operating cycles. If the contactor does approximately 500 switching cycles per week then the contactor will last for a period of 50000/500 = 100 weeks i.e. roughly 2 years. As emphasized above, the life of the contactor is an important parameter and one must be clear about the life One expects from the contactors when used for crane duty applications. Most of the crane duty manufacturers would expect a certain fixed amount of life and this would then guide their contactor selection. # Selection of Contactors for AC-4 (Crane Duty) Applications Here the user must be aware of the approximate switching frequency that the contactors will be subjected too in a given day and then based on the life he desires he can back calculate to arrive at contactor rating. For example, User Specifications are given below, > Switching Operations per day: 300 > Rated Motor current: 30A > Desired Contactor Life: 3 Years > Electrical Life = 300 x 365 x 3 = 328500 = 0.3 Million Referring the electrical life curves, the contactor that gives a life of 0.35 million at 30A AC-4 current is MO 95. Hence for this
requirement MO 95 is the correct contactor selection. If one directly selects the contactor as per rated current without considering the electrical life then the electrical life at 30 A AC-4 will be approximately 57000. Hence the contactor will last only for (57000/300) 190 days which is much lower than desired life. Always consider the rated current and desired Electrical life and based on that arrive at the contactor rating through Electrical life curves. # Selection of contactors for 200000 Operating cycles at rated AC-4 current Most of the times users are not aware of the exact operating cycles the contactor may be subjected too and hence they can refer a standard benchmark of 200000 operating cycles. Below is the selection table of contactors for 200000 operating cycles This rating is given as a ready reckoner in catalogue and the user is assured of 200000 AC-4 operating cycles if the selection is as per this rating. | Contactor | Rated current (A) for 200000 operating cycles at AC-4 415V 50Hz | |-----------|---| | MO 9 | 5.3 | | MO 12 | 7.3 | | MO 18 | 9 | | MO 25 | 16 | | MO 32 | 16 | | MO 40 | 18 | | MO 45 | 19 | | MO 50 | 23 | | MO 60 | 25 | | MO 70 | 27 | | | | | Rated current (A) for 200000 operating cycles | |---| | 34 | | 37 | | 41 | | 60 | | 75 | | 85 | | 100 | | 130 | | | For example, if one wants 200000 operating cycles for the rated current of 9A AC-4 then contactor selected should be MO 18 or above This method of contactor selection is much simpler and must be employed when one expects a fixed electrical life of 200000 operating cycles which is more than sufficient for crane duty applications. If one desires a higher life than 200000 then one can derate the contactors by selecting one or two ratings higher or lower if lower life is acceptable and then verify the selection through Electrical life curves. # **Selection of Contactors for AC-4 (Crane Duty) Applications** ## **Annexure** Selection Chart for Slip Ring Induction Motors for Crane Duty Applications | | | tor duty - 4
z (10 min o
duration) | | Con | tor duty: De
nected (10
cle duratio | Min | | Max rotor voltage | | |--------------------|------|--|-------|------|---|------|----------|-------------------|---------------| | Duty Factor | 20% | 40% | 60% | 20% | 40% | 60% | Starting | Plugging | Speed Control | | MO 9 | 12A | 10.5A | 9.5A | 40A | 35A | 30A | 1100V | 415V | 550V | | M012 | 17A | 15A | 13A | 51A | 42A | 39A | 1100V | 415V | 550V | | MO 18 | 23A | 19.5A | 17.5A | 63A | 54A | 47A | 1100V | 415V | 550V | | MO 25 | 32A | 27A | 23A | 93A | 80A | 70A | 1100V | 415V | 550V | | MO 32 | 45A | 39A | 34A | 102A | 87A | 76A | 1100V | 415V | 550V | | MO 40 | 50A | 42A | 37A | 115A | 95A | 86A | 1100V | 415V | 550V | | MO 45 | 50A | 42A | 37A | 115A | 95A | 86A | 1100V | 415V | 550V | | MO 50 | 63A | 54A | 48A | 140A | 120A | 110A | 1100V | 415V | 550V | | MO 60 | 85A | 73A | 65A | 180A | 155A | 140A | 1100V | 415V | 550V | | MO 70 | 110A | 95A | 85A | 215A | 185A | 163A | 1100V | 415V | 550V | | MO 80 | 110A | 95A | 85A | 215A | 185A | 163A | 1100V | 415V | 550V | | MO 95 | 165A | 135A | 120A | 260A | 230A | 200A | 2200V | 415V | 690V | | MO 110 | 185A | 150A | 135A | 300A | 260A | 230A | 2200V | 415V | 690V | | MO 140 | 210A | 210A | 175A | 315A | 315A | 262A | 2000V | 415V | 600V | | MO 185 | 288A | 288A | 228A | 416A | 416A | 343A | 2000V | 415V | 600V | | MO 225 | 331A | 331A | 281A | 505A | 505A | 417A | 2000V | 415V | 600V | | MO 250 | 332A | 332A | 282A | 506A | 506A | 423A | 2000V | 415V | 600V | | MO 300 | 407A | 407A | 340A | 610A | 610A | 510A | 2000V | 415V | 600V | # **Contactor Selection for Motors** with long starting time This note explains contactor selection for motors with long starting time. The note has been divided into three parts for easy understanding of the concepts involved. They are as given follows, - > Understanding Motor Inrush Current - > Long Starting Time Applications - > Contactor selection for motors with long starting time # **Understanding Motor Inrush Current** (Stator current) A motor generally drives a load through some transmission system. During start, the motor draws a high starting current or inrush current. This current is about 6-8 times the motor rated current and can cause a significant voltage drop. This voltage fluctuation affects other devices connected to the same supply. Hence several other strategies are employed for starting motors to reduce its starting current; the most commonly employed being the Star-Delta starting. The starting value of the current is independent of the load attached; however it must be sufficient to overcome the inertia of the motor load system. However, inertia of the load impacts the starting time of the motor as explained in the next part. As the motor accelerates and nears its rated speed, the current gradually reduces and settles down to a value equal to motor rated current or less depending on the actual load connected. The typical torque-speed characteristics of an induction motor are as given alongside. Speed/torque curve for a NEMA design B motor ## **Long Starting Time Applications** The total time from rest till the motor draws its rated current is called the starting time. The starting time of the motor is a function of the load inertia, load speed and the starting torque developed by the motor. A high inertia load requires an extended time to reach full speed and hence the motor also draws high starting current for a long time. The motor starting time is specified by the manufacturer in the motor data sheet. Since motor starting time is also a function of applied voltage it differs for different starting methods. For example starting time of the motor with Direct-Online starting would be different than with Star-Delta starting. The starting line current in Star Delta configuration is 1/3rd of the starting current of the same motor in DOL configuration. However applied voltage and therefore starting torque also reduces, leading to higher starting time. # **Contactor Selection for Motors** with long starting time # The applications are generally those in which the motor starting time is around 40 to 120 secs. Typical applications involving motors with a high starting time are, - > Induced Draft Fans (ID Fans) - > Forced Draft Fans (FD Fans) ID and FD fans have a high inertia and hence motors required to drive them will have a long starting time. As a result the motor will draw high inrush current for an extended period of time. The high inrush current drawn by the motor at start is carried by the contactors that are used for switching. Since, this current flows for an extended period of time, the contactor needs to be selected judiciously. Guidelines for selection of contactor rating is as follows # Contactor Selection for motors with long starting time Contactors are selected based on their overload current withstand capability. Overload withstand capability is defined in IEC 60947-4-1 as given below, | Rated Operational
Current le(AC3) | Test Current | Duration of Test | |--------------------------------------|------------------|------------------| | ≤ 630 A | 8 x le max/AC-3 | 10 sec | | > 630 A | 6 x le max/AC-3* | 10 sec | It means that a contactor with rated operational current equal to or less than 630A can withstand 8 times its rated AC3 operational current for a period of 10 seconds. This rating is also called as the 10 sec rating of the contactors. ### For Example: - Let Rated operational current (AC3 Utilization category) of contactor = 400A - Then the maximum current it can carry for a period of 10 sec = 8 x I = 3200A Now let us look at an example, how to arrive at minimum AC3 Ratings of the Star, Main and Delta contactors ### Motor specifications Motor kW Rating: 160 kW Motor Full Load Line Current: 304A Motor Starting time in Star-Delta: 85 sec ### Solution: Delta contactor can be directly selected as per type 2 chart specified by the contactor manufacturer. This is because delta contactor is connected only when the motor has reached near its rated speed and motor current has reduced to its full load value # **Contactor Selection for Motors** with long starting time # For selection of Star contactor and Main contactor, the withstand current must be taken into consideration A general schematic of Star-Delta starter is shown below, Starting current in a normal delta motor with DOL starting is around 6-8 times the motor full load current. However in Star-Delta starter motor starting current in star is reduced to 1/3rd of this value. Typically starting current when using Star-Delta starting method is around 2.2 times motor full load current. Starting current (I_s) = 2.2 x motor full load current = 2.2 x 304 = 669A Starting time (T_s) = 85 sec Therefore, (I_s) x^2 $(T)_s$ = 669 x 669 x 85.....(A) Now, Value (A) must be less than the contactor withstand capacity, i.e. Based on IEC 60947-4-1, Contactor Withstand Capacity = (8 I (AC3) x 10.....(B) It is required that, B > A $$le (AC3) > \left(\sqrt{\frac{A}{10}} \div 8\right)$$ Solving the above equation: le(AC3) ≥ 243.8 The contactor must be selected such that its rated AC-3 current le satisfies the above condition. Therefore in this case MNX 265 can be selected for Star & Main Contactor. The rating thus arrived at should be compared with the rating of the contactor as given in Type2 Chart, and The higher rating of the two shall be selected For e.g. In this case, the start and Main contactor rating as given in fused Type 2 chart for 160 kW motor is MNX 140 for Star and Main is MNX 185. Comparing this with the rating arrived at earlier, which is MNX 265, the correct selection will be to use MNX 265 In case of a 160 kW motor with normal starting time (<10 sec) the selection of
contactors according to type 2 charts is: Star Contactor: MNX 140 Main and Delta Contactor: MNX 185 However for the same 160 kW motor with long starting time (85 sec in this case) the contactor selection is: Star Contactor: MNX 265 Main Contactor: MNX 265 Delta Contactor: MNX 185 # **Control Transformer sizing** for contactor actuation ## Introduction A contactor is an electromagnetic device consisting of a coil and magnet system along with fixed and moving contacts. When the coil is energized, it produces a magnetic field thereby attracting the moving magnet. This causes the fixed and moving contacts to connect and the contactor is said to be actuated. The energization of contactor coil is usually done through a control transformer. This is mainly done because voltage requirements vary with control systems and with an intermediary control transformer the desired voltage can be obtained. When a contactor coil is energized, it draws in a high inrush current momentarily. Apart from contactor coils, Relays and solenoids are some other devices which draw inrush current when energized. The control transformer selected must be able to accommodate this momentary high inrush current for a satisfactory operation. ## Selection of a control transformer For a proper selection of control transformer, three parameters of the load circuit must be determined in addition to the minimum voltage required to operate the circuit. These are Hold on VA, Pick-Up VA, and Inrush load power factor. - > Hold-On VA: Hold-On VA is the product of load voltage (V) multiplied by the current that is required to operate the circuit after initial start up or under normal operating conditions. It is calculated by adding the hold-on VA requirements of all the electrical devices of the circuit that will be energized at any given time. Hold-On VA is also sometimes referred as steady state VA. - > Pick-Up VA: Pick-Up VA is the product of load voltage (V) multiplied by the current (A) that is required during start up. It is calculated by adding the pick-up VA requirements of all devices (contactors, timers, relays, solenoids, etc) which will be energized together. Energization of electromagnetic devices takes 20-50 milliseconds. During this inrush period, the electromagnetic devices draw 3 to 10 times the normal current. - > Inrush Load power factor: Inrush load power factor is difficult to determine without a detailed vector analysis of all the load components. Generally such analysis is not feasible; hence a safe assumption would be 40% power factor. Until recently 20% power factor was commonly used for transformer calculations; however tests conducted on major brands of control devices indicate that 40% power factor is a same assumption. It is recommended that a control transformer be sized at 40% power factor. Some electromagnetic devices typically operate at that level due to their inherently low power f Selecting a control transformer at 40% power factor will be more than the adequate size for all the various loads in the circuit. Besides the above parameters there are two parameters of primary and secondary voltage. Primary voltage is the voltage available from electrical distribution system which is connected to the transformer supply terminals. Secondary voltage is the voltage required for load r а which is connected to the transformer load voltage terminals. # **Control Transformer sizing for contactor actuation** ## Steps for selection of control transformer - Determine the supply and load voltages as per requirement. The supply voltage is the voltage available to control transformer and load voltage is the operating voltage of all the devices connected to the Transformer output. - Determine the hold-on and pick-up VA of each coil in the control circuit. This data is provided by the product manufacturer in the datasheet. - > Calculate the hold-on VA by adding the VA requirements of all the equipment that will be energized together(timers, contactors, relays, solenoids, pilot lamps etc). - Calculate the Pick-Up VA of all the coils that will be energized together. Be sure to include the hold-on VA of components that don't have inrush (lamps, timers) as they present load to the transformer during maximum inrush. - Calculate the application Inrush VA by using the following industry accepted formula. - Based on the value of application Inrush VA obtained, use regulation chart for selecting the control transformer rating. Application Inrush VA = $\sqrt{(\text{Pick Up VA})^2 + (\text{Hold On VA})^2}$ # Using regulation chart to select the transformer rating | Continuous VA | Inrush | V A @ 40% Powe | r Factor | | |---|--------------------------|------------------------------|--------------------------|--| | Transformer
Name plate
rating (A) | 85% Secondary
Voltage | 90% Secondary
Voltage (B) | 95% Secondary
Voltage | | | 25 | 160 | 130 | 95 | | | 50 | 270 | 210 | 160 | | | 75 | 435 | 365 | 255 | | | 100 | 635 | 520 | 370 | | | 150 | 1300 | 1010 | 700 | | | 200 | 1975 | 1500 | 1020 | | | 250 | 2680 | 2030 | 1340 | | | 350 | 3665 | 2820 | 1895 | | | 500 | 6300 | 5035 | 3305 | | | 750 | 10555 | 7920 | 5050 | | | 1000 | 15225 | 11160 | 6000 | | The above regulation chart gives the continuous rating of the control transformer and the corresponding Inrush VA at different secondary voltage levels. This secondary voltage value depends on internal losses in The transformer. After calculating the application inrush VA as discussed above, determine the secondary voltage level of the transformer. Column B indicates that during inrush, 90% of the rated voltage would be available at the transformer secondary, which is an acceptable drop in rated voltage. Once this is determined, read down the column until you arrive at a value which is more than the application inrush VA calculated. Corresponding to this value, the value in column A would be the nameplate rating of the control transformer. As a final check, make sure that the transformer VA rating is equal to or greater than the total circuit Hold-On Requirements. # **Control Transformer sizing for contactor actuation** Let us further understand this with the help of an example, Pick Up VA = 550 VA Hold On VA = 36 VA Application Inrush VA = $\sqrt{(550)^2 + (36)^2}$ = 552VA Now from the above table we consider the secondary voltage delivered by the transformer as 90% of the nameplate secondary voltage under maximum inrush conditions at rated input voltage. In column B, under 90% secondary voltage, we have to select a value more than 552 VA. The nearest value greater than 552 VA is 1010 VA. Corresponding to the value the control transformer nameplate rating is 150 VA in column A. # Hence rating of the control transformer for energizing MNX 110 is 150 VA Let us now consider MO 110 contactor, Pick-up VA = 240 VA Hold-on VA = 25 VA Application Inrush VA = $\sqrt{(240)^2 + (25)^2}$ = 241.3VA Now from the above table we consider the secondary voltage delivered by the transformer as 90% of the nameplate secondary voltage under maximum inrush conditions at rated input voltage. In column B, under 90% secondary voltage, we have to select a value more than 242 VA. The nearest value greater than 242 VA is 365 VA. Corresponding to this value the control transformer nameplate rating is 75 VA in column A. Hence rating of the control transformer for energizing MO 110 is 75 VA Summarizing for an 110A AC3 contactor the comparison is as below, | Contactor | MNX 110 | MO 110 | |-----------------------------|---------|--------| | Pick-Up VA | 550 | 240 | | Ho l d-On VA | 36 | 25 | | Application Inrush | 550 | 241.2 | | Size of Control Transformer | 150 VA | 75 VA | It can be seen that with MO contactors, there is a significant reduction in control transformer size. This will in turn result in cost savings for the user. The above method assumes that all contactors are picked up at the same time. There is also an alternative, more accurate way for sizing the control transformer. This method is more application specific and depends on the exact number of components that are actuated at a given point of time. Let us consider a general example of a system having five Star-Delta motor feeders each of 50 HP motors. A typical Star-Delta feeder would consist of a Star contactor, Main contractor and a delta contactor. It would also have two auxiliary contactors, one for start interlocking and one for emergency stop. We will now compute the pick-up VA requirements at different instants of time and would select the control transformer corresponding to the highest Pick-up VA requirement at any given time instant. ## **Case 1: Considering MNX contactors** For a 120 HP Star delta feeder as per Fuse based type 2 charts, selection would be, - > Star Contactor: MNX 80 - Main/Delta Contactor: MNX 95 - Auxiliary contactor: MX0 (One for start interlocking and one for emergency stop) Since there are 5 feeders total contactors are, MNX 80: 5 Nos MNX 95: 10 Nos MX0: 10 Nos (2 in each feeder) The Pick-up and Hold-on VA of individual contactors is as given below, | Contactor | Pick-Up VA | Hold-On VA | |-----------|------------|------------| | MNX 80 | 190 | 21 | | MNX 95 | 550 | 36 | | MX0 | 26 | 4.5 | #### At t = 0 (At Panel Power On) The emergency contactors in all five feeders will pick up. Total Pick-up VA = 26 x 5 VA = 130 VA ### At t = 1 (When Start command is given) The star contactor, main contactor and start interlocking auxiliary contactor will pick-up Total Pick-up VA = $(190 \times 5) + (550 \times 5) + (26 \times 5)$ = 3830 VA ### At t = 2 (At Star to Delta Changeover) The Star contactor will drop off and the delta contactor will pick-up Total Pick-up VA = 550×5 = 2750 VA At t = 0 except star contactor all contactors will be picked up. Hence Hold on VA would be maximum at t=2 Total Hold-on VA = $(36 \times 10) + (4.5 \times 10)$ = 405 VA # **Control Transformer sizing** for
contactor actuation Maximum Pick-up VA requirement = 3830 VA Maximum Hold-on VA requirement = 405 VA Assuming secondary voltage to be 90% of the rated value, The control transformer rating to be selected is 500 VA Had we assumed that all the contactors pick-up at the same time the control transformer selection would have been computed as given alongside. Pick-Up VA = $190 \times 5 + 550 \times 10 + 26 \times 10$ = 6710 VA $Hold-On VA = 21 \times 5 + 36 \times 10 + 4.5 \times 10$ = 510 VA Hence the control transformer rating would be 750 VA, which is much more than the earlier calculated rating. So the earlier method which takes into account the application gives a more accurate control transformer sizing ## **Case 2: Considering MO contactors** For a 120 HP Star delta feeder as per type 2 charts, selection would be. Star Contactor: MO 80 Main/Delta Contactor: MO 95 Auxiliary contactor: MX0 (One for start interlocking and one for emergency stop)15 Since there are 5 feeders total contactors are, MO 80: 5 Nos MO 95: 10 Nos Mx0: 10 Nos (2 in each feeder) The pick up and Hold-on VA of individual contactors is as given below, | Contactor | Pick-Up VA | Hold-On VA | |-----------|------------|------------| | MO 80 | 240 | 25 | | MO 95 | 240 | 25 | | MX0 | 26 | 4.5 | ## At t = 0 (At Panel Power On) The emergency contactors in all five feeders will pick up. Total Pick-up VA = 26 x 5 VA = 130 VA ### At t = 1 (When Start command is given) The star contactor, main contactor, and start interlocking auxiliary contactor will pick up Total Pick-up VA ### At t = 2 (At Star to Delta Changeover) The Star contactor will drop off and the main contactor will pick up Total Pick-up VA = 240 x 5 = 1200 VA At t = 2 except star contactor all contactors will be picked up. Hence Hold on VA would be maximum at t=2 Total Hold-on VA = $(25 \times 10) + (4.5 \times 10)$ = 295 VA ### Maximum Pick-up VA requirement = 2530 VA Maximum Hold-on VA requirement = 295 VA Assuming secondary voltage to be 90% of the rated value, ### The control transformer rating to be selected is 350 VA Had we assumed that all the contactors pick up at the same time the control transformer selection would have been computed as below, Pick-Up VA = $$240 \times 5 + 26 \times 10$$ = 3860 VA Hence the control transformer rating would be 500 VA, which is much more than the earlier calculated rating. So the earlier method which takes into account the application gives a more accurate control transformer sizing # **Control Transformer sizing** for contactor actuation From the above computation it is clear that control transformer size with MO contactors is much lower than that obtained by using MNX contactors. This greatly reduces the cost of the control transformer providing direct benefit to the user. Thus MO turns out to be an economical solution over MNX with regards to control transformer sizing for the end user. #### **Annexure** Below is the table for control transformer ratings for MNX & MO range of contactors (single contactor) at 90% secondary ## **MNX Power Contactors** | MNX Frame Wise | Pick-up VA
(Single Coil) | Hold-on VA
(Single Coil) | Application Inrush
VA (Single Coil) | Transformer VA rating
(For single Coil) | |----------------|-----------------------------|-----------------------------|--|--| | MNX 9-22 | 68 | 11 | 69 | 25 | | MNX 25-40 | 68 | 11 | 69 | 25 | | MNX 50-80 | 190 | 21 | 191 | 50 | | MNX 95-140 | 550 | 36 | 551 | 150 | | MNX 185-225 | 960 | 56 | 962 | 150 | | MNX 300-400 | 2100 | 95 | 2102 | 350 | | MNX 550-650 | 1000 | 25 | 1000 | 150 | ## **MO Power Contactors** | MO Frame Wise | Pick-up VA
(Single Coil) | Hold-on VA
(Single Coil) | Application Inrush
VA (Single Coil) | Transformer VA rating
(For single Coil) | |---------------|-----------------------------|-----------------------------|--|--| | MO 9-45 | 77 | 9 | 77.5 | 25 | | MO 50-70 | 144 | 15 | 144.8 | 50 | | MO 80-110 | 240 | 25 | 241.3 | 75 | | MO 140-225 | 1000 | 50 | 1001.25 | 150 | | MO 250-300 | 1400 | 65 | 1401.5 | 200 | # **Application Guide for Reduced Voltage Autotransformer Starter** ## **Background** With the introduction of M-Line range of controlgear products and F-Line range of SDFs a need for a comprehensive selection chart for autotransformer motor feeder was felt necessary. Also, we have been receiving queries from various branches for an application guide on the same. ## **Brief Description** An autotransformer starter reduces inrush current by using a transformer in the line just ahead of the Motor to step down the voltage applied to the motor terminals. By reducing the voltage, the current drawn from the line is reduced during start-up. Starting with reduced voltage decreases the full load current at the motor terminals in proportion to the voltage reduction while the full load torque is reduced by the square of the voltage reduction. ### **Recommended Wiring Diagram** ## Operation In autotransformer starters, the motor is started at reduced voltage, which is supplied from an autotransformer. The starting sequence has three stages. During the first stage, the autotransformer is star connected, and the line contactor is closed. This starts the motor with a reduced voltage, the value of which depends upon the ratio selected for the transformer. Autotransformers are normally provided with taps to allow the best ratio to be chosen during commissioning. In the second stage, the star connection is opened, and the autotransformer acts as an inductor connected in series with the motor. This transition is normally timed to occur when the motor speed has stabilized at the end of the run-up period. The third stage then follows almost immediately, and involves shunting the transformer completely, so that the motor is directly connected to the supply. As shown in the wiring diagram - Star connection of the autotransformer is made by KM1, then contactor KM2 closes and the motor starts under reduced voltage. - > The neutral point is opened by KM1; part of the autotransformer winding is switched into each phase for a short moment, constituting a stator starting inductance. - > KM3 switches the motor to full mains voltage and causes the autotransformer to be shunted out of circuit by KM2. # **Application Guide for Reduced Voltage Autotransformer Starter** ## **Contactor Switching Sequence** | Contactor | Start | Transition (initial) | Transition (final) | ON | |------------|-------|----------------------|--------------------|-------| | KM1 (Star) | Close | Open | Open | Open | | KM2 (Step) | Close | Close | Close | Open | | KM3 (Main) | Open | Open | Open | Close | When the motor is directly switched to lines, the motor current is generally 6 times the full load current. Istart = $6 \ln = V/Z (3)^{1/3}$ Istart = Starting motor current In = Full load current V = Line voltage In case of autotransformer if a tapping of transformation ratio K is used, then V_{ph} across motor is $KV/(3)^{1/3}$ Motor Current during start; $I = kV/Z (3)^{1/3}$ = kistart = k*6l. The current taken by the autotransformer is Ki2. $= K^2 *6In$ = K2 Istart Hence, though the motor current is reduced by only K times the direct switching current, the current taken by the line is reduced by K^2 times. Similarly for starting torque, >T18 (V/313)2 T1 = torque during direct starting. With an autotransformer, >T18 (V/313)2 T1 = torque during direct starting. Hance, T2/T1=K¹ Starting torque with autotransformer = K² * Starting torque with direct on-line starting. Thus it provides maximum starting torque with minimal line current. Due to transformer action, the line current will be 25 %, 42 % or 64 % of full voltage values for the 50 %, 65 % or 80 % taps respectively. # **Application Guide for Reduced Voltage Autotransformer Starter** ## Operating Curves - 1. Direct Switching Current - 2. Current with Autotransformer The autotransformer motor starter selection chart is based on the closed transition which never disconnects the motor from the power source, and transient phenomena are eliminated. This is Also known as 'Korndorfer' method. The transition from reduced voltage to full voltage on motor starters can be based on current or time. The over current relay monitors the motor current. When the motor current drops below the preset value, the relay signals the motor starter to switch to full voltage. Or when the setting time on the timer has expired, the autotransformer is bypassed. Typically autotransformer has three taps, which provide 50%, 65% and 80% of full line voltage. The autotransformer starter can be used for any squirrel-cage motor. Typically autotransformer has three taps, which provide 50%, 65% and 80% of full line voltage. The autotransformer starter can be used for any squirrel-cage motor. ### **Conclusion:** This chart provides aready reckoner for selection of components for an autotransformer motor feeder. - 1. Direct Motor Torque - 2. Torque with Autotransformer - 3. Load Torque # **Application Guide for Reduced Voltage Autotransformer Starter** | Mtor Ra | ntg: 3Ø, 4° | 15, 50 Hz | | Contactor | | | | Re | elay | | | | |---------|-------------|-----------|---------------|-----------|------------|---------|------------|---------|-----------|---------|------------|--------| | HP | kW | In (A) | Maln
(KM3) | | Step (KM2) | | Star (KM1) | Туре | Range (A) | Fuse | Rating (A) | SDF | | | | | | 50% | 65% | 80% | | | | | | | | 7.5 | 5.5 | 11.2 | MO 12 | MO 9 | MO 9 | MO 9 | MO 9 | RTO - 1 | 8.5-12.5 | HF | 32 | FN 32 | | 10 | 7.5 | 14.8 | MO 18 | MO 9 | MO 9 | MO 12 | MO 9 | RTO - 1 | 12.5-18.5 | HF | 32 | FN 32 | | 12.5 | 9.3 | 19 | MO 25 | MO 9 | MO 9 | MO 18 | MO 9 | RTO - 1 | 17-25.5 | HF | 50 | FN 63 | | 15 | 11 | 22 | MO 25 | MO 9 | MO 12 | MO 18 | MO 12 | RTO - 1 | 17-25.5 | HF | 63 | FN 63 | | 17.5 |
13 | 24 | MO 32 | MO 9 | MO 12 | MO 18 | MO 12 | RTO - 1 | 17-25.5 | HF | 63 | FN 63 | | 20 | 15 | 29 | MO 32 | MO 9 | MO 18 | MO 25 | MO 18 | RTO - 1 | 25-37 | HF | 63 | FN 63 | | 25 | 18.6 | 35 | MO 40 | MO 9 | MO 18 | MO 25 | MO 18 | RTO - 1 | 25-37 | HN, 000 | 80 | FN 100 | | 30 | 22.5 | 40 | MO 45 | MO 12 | MO 18 | MO 32 | MO 18 | RTO - 1 | 35-45 | HN, 000 | 80 | FN 100 | | 35 | 26 | 47 | MO 50 | MO 12 | MO 25 | MO 32 | MO 25 | RTO - 2 | 40-57 | HN, 000 | 100 | FN 100 | | 40 | 30 | 55 | MO 70 | MO 18 | MO 25 | MO 40 | MO 25 | RTO - 2 | 40-57 | HN, 000 | 100 | FN 100 | | 45 | 33.5 | 60 | MO 70 | MO 18 | MO 32 | MO 40 | MO 32 | RTO - 2 | 50-75 | HN, 000 | 100 | FN 100 | | 50 | 37 | 66 | MO 80 | MO 18 | MO 32 | MO 45 | MO 32 | RTO - 2 | 50-75 | HN, 00 | 125 | FN 125 | | 60 | 45 | 80 | MO 95 | MO 25 | MO 40 | MO 70 | MO 40 | RTO - 3 | 75-110 | HN, 00 | 125 | FN 125 | | 75 | 55 | 100 | MO 110 | MO 32 | MO 45 | MO 70 | MO 45 | RTO - 3 | 75-110 | HN, 00 | 160 | FN 160 | | 90 | 67.5 | 120 | MO 140 | MO 32 | MO 70 | MO 80 | MO 70 | RTO - 4 | 105-156 | HN, 0 | 200 | FN 200 | | 100 | 75 | 135 | MO 140 | MO 40 | MO 70 | MO 95 | MO 70 | RTO - 4 | 105-156 | HN, 0 | 200 | FN 200 | | 110 | 80 | 139 | MO 185 | MO 40 | MO 70 | MO 95 | MO 70 | RTO - 4 | 138-201 | HN, 0 | 200 | FN 200 | | 125 | 90 | 165 | MO 185 | MO 45 | MO 95 | MO 110 | MO 95 | RTO - 4 | 138-201 | HN, 1 | 250 | FN 250 | | 150 | 110 | 200 | MO 225 | MO 70 | MO 95 | MO 140 | MO 95 | RTO - 4 | 138-201 | HN, 1 | 250 | FN 250 | | 175 | 130 | 230 | MO 250 | MO 70 | MO 110 | MO 185 | MO 110 | RTO - 4 | 201-291 | HN, 1 | 315 | FN 315 | | 197 | 147 | 260 | MO 300 | MO 70 | MO 140 | MO 185 | MO 140 | RTO - 4 | 201-291 | HN, 2 | 400 | FN 400 | | 200 | 150 | 275 | MO 300 | MO 70 | MO 140 | MO 185 | MO 140 | RTO - 4 | 201-291 | HN, 2 | 400 | FN 400 | | 215 | 160 | 280 | MO 300 | MO 80 | MO 140 | MO 185 | MO 140 | RTO - 4 | 201-291 | HN, 2 | 400 | FN 400 | | 225 | 168 | 300 | MO 300 | MO 80 | MO 140 | MO 225 | MO 140 | RTO - 4 | 255-375 | HN, 2 | 400 | FN 400 | | 245 | 180 | 320 | MNX 400 | MO 95 | MO 140 | MO 225 | MO 140 | RTO - 4 | 255-375 | HN, 2 | 400 | FN 400 | | 270 | 200 | 340 | MNX 400 | MO 95 | MO 185 | MO 225 | MO 185 | RTO - 4 | 255-375 | HN, 3 | 500 | FN 630 | | 300 | 225 | 385 | MNX 550 | MO 110 | MO 185 | MO 250 | MO 185 | MN 12 | 340-570 | HN, 3 | 500 | FN 630 | | 335 | 250 | 425 | MNX 550 | MO 110 | MO 185 | MO 300 | MO 185 | MN 12 | 340-570 | HN, 3 | 500 | FN 630 | | 400 | 300 | 500 | MNX 550 | MO 140 | MO 225 | MO 300 | MO 225 | MN 12 | 340-570 | HN, 3 | 630 | FN 630 | | 430 | 315 | 535 | MNX 550 | MO 140 | MO 300 | MNX 400 | MO 250 | MN 12 | 340-570 | HN, 3 | 630 | FN 630 | # **Length of control cables** ## Introduction There is an inherent capacitance in cables. The cable capacitance indicates how much charge the cable can store within itself. If a voltage is being applied the insulation on the individual wires becomes charged by the voltage. This cable capacitance is defined in $\mu F/km$. With higher lengths of cable the ability to store charge also increases. With advent of technology and focus on energy saving, contactors are also becoming energy efficient and compact. However there is one issue linked with low VA consumption of AC coil of contactors. When the control cable length is high, the cable capacitance is more and it may be sufficient to store energy for providing hold on VA to contactor coil. This may lead to delayed drop off of the contactor. This applies to contactors operating with AC control supply only. The effect of cable capacitance depends on the design of the control circuit as shown below, In this case, when the coil is de-energized the net cable capacitance is disconnected from the supply and discharges through the coil. Hence there may be a slight delay in contactor drop off due to CL In this case, the net cable capacitance continues to remain connected to the supply even after the coil supply is switched off. This capacitance will feed the coil and if the energy stored in the capacitance is more than coil Hold-on VA, the coil will continue to remain energized and the contactor will fail to drop. The problem of cable capacitances is mainly encountered in large scale installations such a crane systems in container terminals or where control is from field devices or automation system situated away from the control panels. Maximum permissible control cable length for reliable contactor drop off can be defined as below: L < 3.18 $$\left(\frac{m}{m+1}\right) \left(\frac{PH * 10^6}{C_c * U_c^2}\right)$$ meter Where L - Length of control cable in meter m - ratio of minimum drop-off voltage to rated coil voltage PH - Rated Hold-On power of the contactor in VA CC - Cable capacitance per unit length in µF/km UC - Rated control supply voltage in V # **Length of control cables** The following table gives a ready reckoner of maximum control cable length for MX contactor (AC) to ensure a clear drop off when control supply is cut off: | Family | Contactors | Hold-On
Power PH | Min Drop-off
Voltage/Rated voltage | L (m) < | | | | | |---------|----------------|---------------------|---------------------------------------|---------|--------|--------|--|--| | | | (VA) | Ud / Uc | 110 V | 240 V | 415 V | | | | MX mini | MX 0/6/9/12 AC | 4.5 | 0.3 | 1365.74 | 286.63 | 95.95 | | | | | MNX 9 - 40 | 11 | 0.35 | 3751.0 | 788.0 | 263.5 | | | | | MNX 50 - 80 | 21 | 0.35 | 7161.0 | 1504.3 | 503.1 | | | | MNX | MNX 95 - 140 | 36 | 0.35 | 12276.0 | 2578.8 | 862.5 | | | | | MNX 185 - 225 | 56 | 0.35 | 19096.1 | 4011.5 | 1341.6 | | | | | MNX 300 - 400 | 95 | 0.35 | 32395.1 | 6805.2 | 2276.0 | | | | | MNX 550 - 650 | 25 | 0.35 | 8525.0 | 1790.8 | 598.9 | | | | | MO 9 - 45 | 9 | 0.35 | 3069.0 | 644.7 | 215.6 | | | | МО | MO 50 - 70 | 15 | 0.35 | 5115.0 | 1074.5 | 359.4 | | | | | MO 80 - 110 | 25 | 0.35 | 8525.0 | 1790.8 | 598.9 | | | | | MO 140 - 225 | 50 | 0.35 | 17050.0 | 3581.7 | 1197.9 | | | | | MO 140 - 225 * | 17 | 0.25 | 4472.0 | 939.4 | 314.2 | | | | | MO 250 - 300 | 65 | 0.35 | 22165.0 | 4656.2 | 1557.2 | | | | | MO 250 - 300 * | 17 | 0.25 | 4472.0 | 939.4 | 314.2 | | | | M00 | MO0 AC | 9 | 0.4 | 1365.74 | 710.42 | 237.6 | | | ^{*} Electronic coil version The following graphs give the trend of permissible control cable lengths with Hold-On VA at different voltage ranges. It must be noted that the trends are given at most common values of cable capacitances Cc. Cc= 0.2 and Cc = 0.3 μ f/km ## Applicable for MNX / MO Contactors ## $Cc = 0.2 \mu f / km$ ## For $Cc = 0.3 \mu f / km$ # **Length of control cables** ## **Applicable for MX Mini & MX0 Control Contactors** ## For $Cc = 0.2 \mu f / km$ ## For $Cc = 0.3 \mu f / km$ # Detailed Selection guide for lightening circuit Today, street lighting commonly uses high intensity discharge lamps. The lamps generally used for street lighting and outdoor lighting are given below. - Metal Halide lamps - > Sodium vapour lamps Out of these, high pressure sodium vapour lamps are the most ubiquitous for street lighting because they are the most efficient light source. HPSV lamps are preferred because even though it has low colour rendering, it is not a major requirement in street lighting applications. The comparison is shown in the annex. ## **Brief description of HPSV lamp** #### Operation: - - These lamps use an alloy of sodium and mercury (called sodium amalgam) in a discharge through xenon gas at high pressure inside the arc tube. - There is an ignitor built into the ballast which sends a pulse of high voltage energy (3000V to 4500V) through the arc tube. This pulse starts an arc through the xenon gas. - This ignitor operates within a second or two after switch on, and through the ballast induces aseries of very high voltage pulses to ignite the lamp. Once the lamp has started, the internal ignitor stops operating. - > Xenon gas is ionized and this facilitates striking of arc when voltage is applied across electrodes. The heat generated by the arc then vaporizes the mercury and sodium. The mercury vapor raises the gas pressure and the sodium vapour produces light when the pressure within the arc tube is sufficient. ## **Current profile** Inrush current during switch ON due to charging of circuit capacitors - With the capacitor introduced in the supply circuit for power factor compensation, it draws a charging current during switching ON. The value of inrush current during switch ON of lamps is generally between 20-60In for a period less than 5 ms. **Preheating current:** - Before ignition in order to ionize the gas between the electrodes, the discharge lamp draws more current from the supply. This current (also known as starting current) generally ranges from 1.1 to 1.6 times the nominal current In for a period of 2-10 min. #### For Lighting Circuit Switching According to IEC 60947-4-1: AC-5a, 5b Utilization category The operating conditions of lighting circuits have the following characteristics: - Continuous duty: the switching device can remain closed for several days or even months - A dispersion factor of 1: all luminaries in the same group are switched ON or OFF simultaneously - A relatively high temperature around the device due to the enclosure, the presence of fuses, or an unventilated control panel location # Detailed Selection guide for lightening circuit # **Contactor Selection Based on :** - > A 220/240V single-phase circuit - An ambient temperature of 55C0, taking into account the operating conditions - > An electrical life of more than 10 years # A) Selection chart for HPSV lamps 240V, 50 Hz with power factor compensation Utilization category AC-5a ### **HPSV Chart with Compensation** ### **Considerations:** - The total current - > Transient phenomena which occur at switch-on - > The starting current and their duration - > The circulation of any harmonics which may be present | Lamp | Rating (W) | | 50 | 70 | 100 | 150 | 250 | 400 | 700 | 1000 |
---|---|-----|------|------|------|-------|-------|------|------|------| | characteristics | Total power
(Including
ballast power) | | 62.5 | 87.5 | 125 | 187.5 | 312.5 | 500 | 875 | 1250 | | Starting (preheating) curre | ent (A) | | 0.40 | 0.55 | 0.79 | 1.19 | 1.98 | 3.17 | 5.55 | 7.93 | | Running current (A) | | | 0.28 | 0.40 | 0.57 | 0.85 | 1.42 | 2.26 | 3.96 | 5.66 | | Capacitance value require compensation (µF) | d for | | 6.8 | 10 | 15 | 22 | 33 | 68 | 100 | 150 | | | MO 9 (qty) | 9 | 32 | 23 | 16 | 11 | 6 | 4 | 2 | 2 | | | MO 12 (qty) | 12 | 42 | 30 | 21 | 14 | 8 | 5 | 3 | 2 | | | MO 18 (qty) | 18 | 63 | 45 | 32 | 21 | 13 | 8 | 5 | 3 | | | MO 25 (qty) | 25 | 88 | 63 | 44 | 29 | 18 | 11 | 6 | 4 | | | MO 32 (qty) | 32 | 113 | 81 | 56 | 38 | 23 | 14 | 8 | 6 | | | MO 40(qty) | 40 | 141 | 101 | 71 | 47 | 28 | 18 | 10 | 7 | | | MO 45 (qty) | 45 | 159 | 113 | 79 | 53 | 32 | 20 | 11 | 8 | | Max no. of | MO 50 (qty) | 50 | 176 | 126 | 88 | 59 | 35 | 22 | 13 | 9 | | lamps per | MO 60 (qty) | 60 | 212 | 151 | 106 | 71 | 42 | 26 | 15 | 11 | | phase | MO 70 (qty) | 70 | 247 | 176 | 123 | 82 | 49 | 31 | 18 | 12 | | | MO 80 (qty) | 80 | 282 | 202 | 141 | 94 | 56 | 35 | 20 | 14 | | | MO 95 (qty) | 95 | 335 | 239 | 168 | 112 | 67 | 42 | 24 | 17 | | | MO 110 (qty) | 110 | 388 | 277 | 194 | 129 | 78 | 48 | 28 | 19 | | | MO 140 (qty) | 140 | 494 | 353 | 247 | 165 | 99 | 62 | 35 | 25 | | | MO 185 (qty) | 185 | 652 | 466 | 326 | 217 | 130 | 82 | 47 | 33 | | | MO 225 (qty) | 225 | 794 | 567 | 397 | 265 | 159 | 99 | 57 | 40 | | | MO 250 (qty) | 250 | 882 | 630 | 441 | 294 | 176 | 110 | 63 | 44 | | | MO 300 (qty) | 300 | 1058 | 756 | 529 | 353 | 212 | 132 | 76 | 53 | # **Detailed Selection guide for** lightening circuit B) Selection chart for HPSV lamps 240V, 50 Hz without power factor compensation Utilization category AC-5a **HPSV Chart without Compensation** | | Rating (W) | | 50 | 70 | 100 | 150 | 250 | 400 | 700 | 1000 | |--------------------------|---|-----|------|------|------|-------|-------|------|-------|-------| | Lamp
characteristics | Total power
(Including
ballast power) | | 62.5 | 87.5 | 125 | 187.5 | 312.5 | 500 | 875 | 1250 | | Starting (Preheating) cu | rrent (A) | | 0.91 | 1.28 | 1.82 | 2.73 | 4.56 | 7.29 | 12.76 | 18.23 | | Running current (A) | | AC3 | 0.65 | 0.91 | 1.30 | 1.95 | 3.26 | 5.21 | 9.11 | 13.02 | | | MO 9 (qty) | 9 | 14 | 10 | 7 | 5 | 3 | 2 | 1 | 1 | | | MO 12 (qty) | 12 | 18 | 13 | 9 | 6 | 4 | 2 | 1 | 1 | | | MO 18 (qty) | 18 | 28 | 20 | 14 | 9 | 6 | 3 | 2 | 1 | | | MO 25 (qty) | 25 | 38 | 27 | 19 | 13 | 8 | 5 | 3 | 2 | | | MO 32 (qty) | 32 | 49 | 35 | 25 | 16 | 10 | 6 | 4 | 2 | | | MO 40(qty) | 40 | 61 | 44 | 31 | 20 | 12 | 8 | 4 | 3 | | | MO 45 (qty) | 45 | 69 | 49 | 35 | 23 | 14 | 9 | 5 | 3 | | | MO 50 (qty) | 50 | 77 | 55 | 38 | 26 | 15 | 10 | 5 | 4 | | Max no. of lamps per | MO 60 (qty) | 60 | 92 | 66 | 46 | 31 | 18 | 12 | 7 | 5 | | phase | MO 70 (qty) | 70 | 107 | 77 | 54 | 36 | 21 | 13 | 8 | 5 | | | MO 80 (qty) | 80 | 123 | 88 | 61 | 41 | 25 | 15 | 9 | 6 | | | MO 95 (qty) | 95 | 146 | 104 | 73 | 49 | 29 | 18 | 10 | 7 | | | MO 110 (qty) | 110 | 169 | 120 | 84 | 56 | 34 | 21 | 12 | 8 | | | MO 140 (qty) | 140 | 215 | 153 | 107 | 72 | 43 | 27 | 15 | 11 | | | MO 185 (qty) | 185 | 284 | 203 | 142 | 95 | 57 | 35 | 20 | 14 | | | MO 225 (qty) | 225 | 345 | 246 | 173 | 115 | 69 | 43 | 25 | 17 | | | MO 250 (qty) | 250 | 383 | 274 | 192 | 128 | 77 | 48 | 27 | 19 | | | MO 300 (qty) | 300 | 460 | 329 | 230 | 153 | 92 | 58 | 33 | 23 | # M03 Pole Power Contactors MO Contactors, with their unique styling and visual appeal provide a unique blend of aesthetics with reliable performance. The contactors, available from 9A to 300A AC-3 are suited for general purpose as well as special purpose machines. Their compact design ensures saving in panel space and being RoHS compliant they provide all the benefits of a clean and green contactor. # OPEN DOORS TO NEW DIMENSIONS IN SPACE ECONOMY # **Overview** Cassette type bridge for easy contact replacement Safety shrouds for power terminals to ensure safe maintenance environment Box clamp terminations for faster termination Modular load feeder 1NO+1 NC Aux. contact inbuilt in 45 mm width for 9A / 12A / 18A # **Key Features** ## **MO Contactors** - > Completely shrouded and safe - > Compact thus saving panel space - > Unique styling and visual appeal - > Standardized accessories for entire range reducing inventory - > Lug less termination for fast termination and significant reduction in wiring costs - > Low VA consumption thus reducing control transformer size - > Wide range of accessories to meet all applications In keeping with the mission to deliver the best, Lauritz Knudsen understands the requirements of the RoHS directive. The directive restricts the use of hazardous substances in electrical and electronic equipment and bans electrical equipment containing more than permitted levels of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyl (PBS) and polybrominated diphenyl ether (PBDE) flame retardants. - > Range from 9A-300A AC-3e - Range 140A-300A available with conventional/universal AC/DC electronic coil version - > Low pick-up VA consumption - > Standardized accessories for 9A-110A & 140A-300A range - DIN Rail mounting facility upto 110A - > Compact dimensions saving precious panel space - > Lug as well as Lugless termination - > RoHS compliant | | | | 271 472 473 487 | 77 19 19 10 | 271 472 471 440 | |---|---|----------|-----------------|-------------|-----------------| | | | Units | MO 9 | MO 12 | MO 18 | | Catalogue no. | | | CS 94833 | CS 94834 | CS 94835 | | Conformance to standards | | | | | | | Power Contacts | | | | | | | No. of poles | | | 3 | 3 | 3 | | Rated insulation voltage, U i | | V | 1000 | 1000 | 1000 | | Rated impulse withstand volta | - | kV | 8 | 8 | 8 | | | 240 V AC | kW | 2.2 | 3.0 | 4.0 | | Rated kW | 415 - 500 V AC | kW | 4.5 | 5.5 | 9.3 | | | 690 V AC | kW | 5.5 | 7.5 | 11.0 | | | 240 V AC | А | 300 | 400 | 400 | | Rated making capacity | 415 - 500 V AC | А | 300 | 400 | 400 | | | 690 V AC | А | 84 | 108 | 144 | | | 240 V AC | А | 250 | 300 | 300 | | Rated breaking capacity | 415 - 500 V AC | Α | 250 | 300 | 300 | | | 690 V AC | Α | 70 | 90 | 120 | | Rated operational current, | Utilization category AC-1 | Α | 30 | 32 | 32 | | Ie at60°Ċ | Utilization category AC-2 | Α | 9 | 12 | 18 | | Motor duty : 3Ø, 415 V,
50 Hz | Utilization category AC-3e | Α | 9 | 12 | 18 | | | Utilization category AC-4 | Α | 9 | 12 | 18 | | | Utilization category AC-4 (2,00,000 operations) | А | 5.3 | 7.3 | 9 | | Rated Operational current,
le at 60°C
Motor duty : 3Ø, 690 V, 50 Hz | Utilization category AC-3e | А | 7 | 9 | 12 | | AC-8b rating at 415V, 50 Hz | | А | 11.5 | 15.5 | 23.5 | | | 1 Seconds | Α | 250 | 300 | 300 | | | 10 Seconds | Α | 105 | 145 | 145 | | Permissible short | 30 Seconds | Α | 70 | 70 | 84 | | time ratings | 1 Minute | Α | 60 | 80 | 80 | | | 10 Minute | Α | 30 | 40 | 40 | | | 15 Minute | Α | 25 | 30 | 30 | | Mechanical life, No. of operatir | ig cycles | millions | 10 | 10 | 10 | | | Mechanical | cy/hr | 7200 | 7200 | 7200 | | Max. frequency of | Utilization category AC-1 | cy/hr | 3000 | 3000 | 3000 | | operations: | Utilization category AC-2 | cy/hr | 750 | 750 | 750 | | Operating cycles/hr | Utilization category AC-3e | cy/hr | 750 | 750 | 750 | | | Utilization category AC-4 | cy/hr | 300 | 300 | 300 | | Vibration resistance conformir | ~ | | | | | | Ambient temperature around | Service temperature | °C | | | | | the device | Storage temperature | °C | | | | | Altitude without deration | | m | | | | | Degree of Pollution | | | | | | | Degree of protection | | | | | | | Protective treatment as per IEC | | | | | | | Fuse protection against short of | | | HF 25 | HF 32 | HF 32 | | Watt loss per pole | Utilization category AC-1 | W | 1.6 | 2.5 | 2.5 | | | Utilization category AC-3e | W | 0.25 | 0.5 | 0.9 | | MO 25 | MO 32 | MO 40 | MO 45 | MO 50 | MO 60 | |----------|-------------------------|-----------------|-----------|-----------|-----------| | CS 94567 | CS 94568 | CS 94569 | CS 94570 | CS 94572 | CS 94573 | | IS/IEC | 60947-4-1, IEC 60947-4- | 1, EN 60947-4-1 | | | | | | | | | | | | 3 | 3 | 3 | 3 | 3 | 3 | | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | 8 | 8 | 8 | 8 | 8 | 8 | | 5.5 | 7.5 | 11.0 | 15.0 | 15.0 | 18.6 | | 11 | 17.3 | 22.5 | 25 | 30 | 33.5 | | 12.5 | 18.5 | 22.0 | 22.0 | 30.0 | 30.0 | | 550 | 550 | 550 | 550 | 1000 | 1000 | | 550 | 550 | 550 | 550 | 1000 | 1000 | | 180 | 252 | 300 | 300 | 420 | 420 | | 550 | 550 | 550 | 550 | 900 | 900 | | 550 | 550 | 550 | 550 | 900 | 900 | | 150 | 210 | 250 | 250 | 350 | 350 | | 45 | 50 | 50 | 50 | 100 | 100 | | 25 | 32 | 40 | 45 | 50 | 60 | | 25 | 32 | 40 | 45 | 50 | 60 | | 25 | 32 | 40 | 45 | 50 | 60 | | | | | | | | | 16 | 16 | 18 | 19 | 23 | 25 | | | | | | | | | 15 | 22 | 25 | 25 | 35 | 35 | | | | | | | | | 32.5 | 41.5 | 52 | 58.5 | 65 | 78 | | 400 | 600 | 600 | 600 | 1000 | 1000 | | 240 | 400 | 400 | 400 | 650 | 650 | | 120 | 225 | 225 | 225 | 370 | 370 | | 110 | 150 | 150 | 150 | 250 | 250 | | 50 | 70 | 70 | 70 | 120 | 120 | | 45 | 65 | 65 | 65 | 110 | 110 | | 10 | 10 | 10 | 10 | 10 | 10 | | 7200 | 7200 | 7200 | 7200 | 3600 | 3600 | | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | | 750 | 750 | 750 | 750 | 750 | 750 | | 750 | 750 | 750 | 750 | 750 | 750 | | 300 | 300 | 300 | 150 | 300 | 300 | | | 5 300 Hz : 3g | | | | | | | -20°C to + 60°C | | | | | | | -40°C to +80°C | | | | | | | 3000 | | | | | | | 3 | | | | | | | IP 20 | | | | | | | TH | | | | | | HF 63 | HF 63 | HN,000 80 | HN,000 80 | HN,00 100 | HN,00 125 | | 4 | 3.5 | 3.5 | 3.5 | 5.7 | 9.5 | | 1.25 | 1.5 | 2.3 | 2.9 | 5 | 5.3 | | 1,20 | 1.0 | 2.0 | |
• | 0.0 | - > Range from 9A-300A AC-3e - Range 140A-300A available with conventional/universal AC/DC electronic coil version - > Low pick-up VA consumption - > Standardized accessories for 9A-110A & 140A-300A range - DIN Rail mounting facility upto 110A - > Compact dimensions saving precious panel space - > Lug as well as Lugless termination - > RoHS compliant | | | | 277 477 111 | 20 40 40 | 211 412 *** | |--|-----------------------------|----------|--|--|--| | | | Units | MO 9 | MO 12 | MO 18 | | Catalogue no. | | | CS 94833 | CS 94834 | CS 94835 | | Auxiliary Contacts | | | | | | | No. of additional aux. co | ntact possib l e | | 4 | 4 | 4 | | No. of built-in auxiliary of | contacts | | 1 NO + 1 NC | 1 NO + 1 NC | 1 NO + 1 NC | | No. of built-in Conforma | nce to standard | | | | | | Conventional thermal cu | rrent, Ith at 60°C | А | 10 | 10 | 10 | | Endurance of auxiliary C | ontacts | millions | 0.5 | 0.5 | 0.5 | | | 24-110 V | А | 6 | 6 | 6 | | AC-15 rating,
50 Hz | 220-240 V | Α | 4 | 4 | 4 | | | 360-440 V | Α | 4 | 4 | 4 | | | 525-600 V | A | 1.2 | 1.2 | 1.2 | | | 24 V | Α | 6 | 6 | 6 | | | 110-125 V | Α | 1.1 | 1.1 | 1.1 | | DC-13 rating | 250 V | Α | 0.55 | 0.55 | 0.55 | | | 480 V | Α | 0.31 | 0.31 | 0.31 | | | 500 V | Α | 0.27 | 0.27 | 0.27 | | | 600 V | Α | 0.2 | 0.2 | 0.2 | | Terminal capacity (Solid | or multi strand conductors) | m²m | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | | Coil | | | | | | | Voltage available Uc | 50 / 60 Hz | V | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | | Pick-up | VA | VA | 68 | 68 | 68 | | Hold-on | VA | VA | 9 | 9 | 9 | | Hola-on | Watts | W | 2.8 | 2.8 | 2.8 | | | Pick-up (%Uc) 50Hz | %Uc | 65 - 110 | 65 - 110 | 65 - 110 | | Limits of operation | Pick-up (%Uc) 60Hz | %Uc | 85 - 110 | 85 - 110 | 85 - 110 | | | Drop-off (%Uc) | %Uc | 35 - 55 | 35 - 55 | 35 - 55 | | Operating time | Closing time | ms | 12 - 21 | 12 - 21 | 12 - 21 | | Operating time | Opening time | ms | 6 - 16 | 6 - 16 | 6 - 16 | | Safe isolation between coil and auxiliary contacts | | V | 690 | 690 | 690 | | Overall dimensions H x V | | mm | 87 x 45 x 89 | 87 x 45 x 89 | 87 x 45 x 89 | | Mounting clearance (fro | nt) | mm | 10 | 10 | 10 | | Weight | | kg | 0.38 | 0.38 | 0.38 | | 17 | 201 | 227 - 23 | 257 | 219 407 | 3H 4H | |--|--|--|--|--|--| | MO 25 | MO 32 | MO 40 | MO 45 | MO 50 | MO 60 | | CS 94567 | CS 94568 | CS 94569 | CS 94570 | CS 94572 | CS 94573 | | | | | | | | | 8 | 8 | 8 | 8 | 8 | 8 | | - | - | - | - | = | - | | | | | | | | | 10 | 10 | 10 | 10 | 10 | 10 | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | 6 | 6 | 6 | 6 | 6 | 6 | | 4 | 4 | 4 | 4 | 4 | 4 | | 4 | 4 | 4 | 4 | 4 | 4 | | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | | 6 | 6 | 6 | 6 | 6 | 6 | | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 2 x 2.5 | | | | | | | | | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | | 77 | 77 | 77 | 77 | 144 | 144 | | 9 | 9 | 9 | 9 | 15 | 15 | | 3 | 3 | 3 | 3 | 6 | 6 | | 65 - 110 | 65 - 110 | 65 - 110 | 65 - 110 | 75 - 110 | 75 - 110 | | 85 - 110 | 85 - 110 | 85 - 110 | 85 - 110 | 85 - 110 | 85 - 110 | | 35 - 55 | 35 - 55 | 35 - 55 | 35 - 55 | 35 - 55 | 35 - 55 | | 12 - 21 | 12 - 21 | 12 - 21 | 12 - 21 | 11 - 20 | 11 - 20 | | 6 - 16 | 6 - 16 | 6 - 16 | 6 - 16 | 6 - 13 | 6 - 13 | | 690 | 690 | 690 | 690 | 690 | 690 | | 87 x 45 x 93.5 | 123.6 x 55 x 122.1 | 123.6 x 55 x 122.1 | | 10 | 10 | 10 | 10 | 10 | 10 | | 0.44 | 0.44 | 0.44 | 0.44 | 1.1 | 1.1 | - > Range from 9A-300A AC-3e - > Range 140A-300A available with conventional/universal AC/DC electronic coil version - > Low pick-up VA consumption - > Standardized accessories for 9A-110A & 140A-300A range - DIN Rail mounting facility upto 110A - > Compact dimensions saving precious panel space - > Lug as well as Lugless termination - > RoHS compliant | | | Units | MO 9 | MO 12 | MO 18 | | | |---|--|-------|--------------------------|--------------------------|------------|--|--| | Catalogue no. | | | CS 94833 | CS 94834 | CS 94835 | | | | Type of Terminal | | | | | | | | | | Cable with Ferrule type Lug | mm | 1 x (1.5-4), 2 x (1-2.5) | | | | | | (| Cable with Pin type Lug | mm | | 1 x (1.5-6) | | | | | (| Cable with Fork type Lug | mm | | 1 x (1.5-4), 2 x (1.5-4) | | | | | | Cable with Ring type Lug | mm | | - | | | | | No.of cable x
(Max.Range - Min. Range) | Cable with Lug (spreader links) | (mîm) | 2 x 16 | 2 x 16 | 2 x 16 | | | | (Max.halige - Mill. halige) | Busbar (with spreader) | (mîm) | 12 | 12 | 12 | | | | [| Busbar (without spreader) | mm | - | - | - | | | | | Solid conductors | mm | 2 x 10 | 2 x 10 | 2 x 10 | | | | 1 | Multi strand conductors | mm | 1 x (1.5-6), 2 x (1.5-4) | | | | | | Tightening Torque | Main Pole Terminal | Nm | M3.5 / 1.2 | M3.5 / 1.2 | M3.5 / 1.2 | | | | rigitterining rorque | Aux. Pole / Coil / Add on block Terminal | | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | | | | 1 | DC 1 (110V) | Α | 20 | 25 | 25 | | | | DC ratings | DC 1 (220V) | Α | 20 | 25 | 25 | | | | | DC 3 (110V) | Α | 20 | 25 | 25 | | | | and AC coil operation | DC 3 (220V) | Α | 15 | 18 | 18 | | | | 1 | DC 5 (110V) | Α | 12 | 18 | 20 | | | | | DC 5 (220V) | Α | 7.5 | 8 | 10 | | | [^] keeping (22mm-25mm) clearance | MO 25 | MO 32 | MO 40 | MO 45 | MO 50 | MO 60 | | |--------------------|-----------------------|--------------|------------|-------------------------|-----------------|--| | CS 94567 | CS 94568 | CS 94569 | | CS 94572 | CS 94573 | | | Philip and Slot He | ead Combination Screw | | | Box Clamp with | Slot Head Screw | | | | 1 x (4-10), | 2 x (2.5-6) | | 1 x (10-35 |), 2 x (6-25) | | | | 1 x (4-10) |), 2 x (2.5) | | 1 x (10-35 |), 2 x (6-25) | | | | 1 x (4-10), | 2 x (2.5-6) | | | - | | | | | _ | | | - | | | 2 x 16 | 2 x 16 | 2 x 16 | 2 x 16 | 2 x 50 | 2 x 50 | | | 12 | 12 | 12 | 12 | 18 | 18 | | | - | - | - | - | - | - | | | 2 x 10 | 2 x 10 | 2 x 10 | 2 x 10 | - | - | | | | 1 x (4-10), | 2 x (2.5-6) | | 1 x (10-35), 2 x (6-35) | | | | M4 / 2.5 | M4 / 2.5 | M4 / 2.5 | M4 / 2.5 | M6 / 4 | M6 / 4 | | | M3.5 / 1.1 | | | 32 | 40 | 40 | 40 | 65 | 70 | | | 32 | 40 | 40 | 40 | 65 | 70 | | | 32 | 40 | 40 | 40 | 65 | 70 | | | 32 | 40 | 40 | 40 | 65 | 70 | | | 25 | 32 | 40 | 40 | 50 | 60 | | | 12 | 20 | 22 | 25 | 35 | 35 | | - > Range from 9A-300A AC-3e - > Range 140A-300A available with conventional/universal AC/DC electronic coil version - > Low pick-up VA consumption - > Standardized accessories for 9A-110A & 140A-300A range - DIN Rail mounting facility upto 110A - > Compact dimensions saving precious panel space - > Lug as well as Lugless termination - > RoHS compliant | | | | 9 9 9 | | | |--|---|----------|-----------|-----------|----------| | | | Units | MO 70 | MO 80 | MO 95 | | Catalogue no. | | | CS 94574 | CS 94576 | CS 94577 | | Conformance to standards | | | | | | | Power Contacts | | | | | | | No. of poles | | | 3 | 3 | 3 | | Rated insulation voltage, Ui | | V | 1000 | 1000 | 1000 | | Rated impulse withstand vo | oltage, U _{imp} | kV | 8 | 8 | 8 | | | 240 V AC | kW | 18.6 | 22.0 | 25 | | Rated kW | 415 - 500 V AC | kW | 37 | 40 | 45 | | | 690 V AC | kW | 40 | 45 | 45 | | | 240 V AC | Α | 1000 | 1500 | 1500 | | Rated making capacity | 415 - 500 V AC | Α | 1000 | 1500 | 1500 | | | 690 V AC | Α | 540 | 600 | 600 | | | 240 V AC | Α | 900 | 1200 | 1200 | | Rated breaking capacity | 415 - 500 V AC | Α | 900 | 1200 | 1200 | | | 690 V AC | Α | 450 | 500 | 500 | | | Utilization category AC-1 | Α | 100 | 125 | 125 | | B. 1 | Utilization category AC-2 | Α | 70 | 80 | 95 | | Rated operational current, Ie at60°C | Utilization category AC-3e | Α | 70 | 80 | 95 | | Motor duty : 3Ø, 415 V, 50 Hz | Utilization category AC-4 | Α | 70 | 80 | 95 | | · | Utilization category AC-4 (2,00,000 operations) | А | 27 | 34 | 37 | | Rated Operational current,
le at 60° C
Motor duty : 3Ø, 690 V, 50 Hz | Utilization category AC-3e | А | 45 | 50 | 50 | | | 1 Seconds | Α | 1000 | 1320 | 1320 | | | 10 Seconds | Α | 650 | 800 | 800 | | Permissible short | 30 Seconds | Α | 370 | 500 | 500 | | time ratings | 1 Minute | Α | 250 | 400 | 400 | | | 10 Minute | Α | 120 | 170 | 170 | | | 15 Minute | Α | 110 | 160 | 160 | | Mechanical life, No. of oper | ating cycles | millions | 10 | 10 | 10 | | | Mechanical | cy/hr | 3600 | 3600 | 3600 | | Max. frequency of | Utilization category AC-1 | cy/hr | 3000 | 3000 | 3000 | | operations: | Utilization category AC-2 | cy/hr | 750 | 750 | 750 | | Operating cycles/hr | Utilization category AC-3e | cy/hr | 750 | 750 | 750 | | | Utilization category AC-4 | cy/hr | 150 | 150 | 150 | | Vibration resistance confor | | | | | | | Ambient temperature around | Service temperature | °C | | | | | the device | Storage temperature | °C | | -40°C to | + 80°C | | Altitude without deration | | m | | | | | Degree of Pollution | | | | | | | Degree of
protection | | | | | | | Protective treatment as per | · IEC 6006 - 2 - 30 | | | | | | Fuse protection against sho | ort circuit | | HN,00 160 | HN,00 160 | HN,0 200 | | Watt loss per pole | Utilization category AC-1 | W | 10.5 | 12.5 | 12.5 | | watt ioss per pole | Utilization category AC-3e | W | 6 | 6.4 | 8.1 | | | | | | | | ^{*} Universal AC/DC electronic coil version # Pls refer ordering data for electronic coil version | MO 110 | MO 140# | MO 185# | MO 225# | MO 250# | MO 300# | |------------------|--------------------------|------------|-----------------|------------|------------| | CS 94578 | CS 95000 | CS 95001 | CS 95002 | CS 94441 | CS 94440 | | IS/IEC 60947-4-1 | , IEC 60947-4-1, EN 6094 | 7-4-1 | | | | | | | | | | | | 3 | 3 | 3 | 3 | 3 | 3 | | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | 8 | 8 | 8 | 8 | 8 | 8 | | 30 | 40 | 55 | 63 | 75 | 90 | | 55 | 80 | 95 | 125 | 150 | 180 | | 60 | 132 | 160 | 220 | 250 | 280 | | 1500 | 1800 | 2400 | 3000 | 4000 | 4500 | | 1500 | 1680 | 2700 | 2700 | 3600 | 4000 | | 780 | 1680 | 2220 | 2700 | 3000 | 3600 | | 1200 | 1600 | 1850 | 2500 | 3200 | 4000 | | 1200 | 1400 | 2250 | 2250 | 3000 | 3600 | | 650 | 1400 | 1850 | 2250 | 2500 | 3000 | | 140 | 250 | 275 | 275 | 400 | 500 | | 110 | 140 | 185 | 225 | 250 | 300 | | 110 | 140 | 185 | 225 | 250 | 300 | | 110 | 140 | 185 | 225 | 250 | 300 | | 41 | 60 | 75 | 85 | 100 | 130 | | | | | | | | | 65 | 140 | 185 | 225 | 250 | 300 | | 1320 | 2000 | 3000 | 3000 | 3500 | 3500 | | 800 | 1800 | 2000 | 2000 | 2400 | 2400 | | 509 | 1000 | 1400 | 1400 | 1500 | 1800 | | 400 | 750 | 1100 | 1100 | 1100 | 1300 | | 170 | 550 | 600 | 600 | 550 | 750 | | 160 | 250 | 275 | 275 | 400 | 500 | | 10 | 10 | 10 | 10 | 10 | 10 | | 3600 | 3600/3600* | 3600/3600* | 3600/3600* | 3600/2400* | 3600/2400* | | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | | 750 | 750 | 750 | 750 | 750 | 750 | | 750 | 750 | 750 | 750 | 750 | 750 | | 150 | 150 | 150 | 150 | 150 | 150 | | 5 | . 300 Hz: 3g | | | | | | -20 | 0°C to + 60°C | | | | | | | | | -15°C to + 80°C | | | | | 3000 | | | | | | | 3 | | | | | | | IP 20 | | | | | | | TH | | | | 11110 555 | | HN,0 200 | HN,1 250 | HN,1 315 | HN,1 315 | HN,2 400 | HN,2 500 | | 12.8 | 16 | 18 | 20 | 25 | 32 | | 8.25 | 11 | 11 | 13 | 15 | 20 | - > Range from 9A-300A AC-3e - > Range 140A-300A available with conventional/universal AC/DC electronic coil version - > Low pick-up VA consumption - > Standardized accessories for 9A-110A & 140A-300A range - DIN Rail mounting facility upto 110A - Compact dimensions saving precious panel space - > Lug as well as Lugless termination - > RoHS compliant | | | | 0.0 | | | |--|----------------------------------|-----------------|--|--|--| | | | Units | MO 70 | MO 80 | MO 95 | | Catalogue no. | | | CS 94574 | CS 94576 | CS 94577 | | Auxiliary Contacts | | | | | | | No. of additional aux. | • | | 8 | 8 | 8 | | No. of built-in auxiliary | / contacts | | | | | | Conventional thermal | current, I th at 55°C | Α | 10 | 10 | 10 | | Endurance of auxiliary | Contacts | millions | 0.5 | 0.5 | 0.5 | | | 24-110 V | Α | 6 | 6 | 6 | | AC-15 rating, | 220-240 V | Α | 4 | 4 | 4 | | 50 Hz | 360-440 V | Α | 4 | 4 | 4 | | | 525-600 V | Α | 1.2 | 1.2 | 1.2 | | | 24 V | Α | 6 | 6 | 6 | | | 110-125 V | Α | 1.1 | 1.1 | 1.1 | | DC-13 rating | 250 V | Α | 0.55 | 0.55 | 0.55 | | Do To Tutting | 480 V | Α | 0.31 | 0.31 | 0.31 | | | 500 V | Α | 0.27 | 0.27 | 0.27 | | | 600 V | Α | 0.2 | 0.2 | 0.2 | | Terminal capacity (Solid or multi strand conductors) | | mm ² | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | | Coil | | | | | | | Voltage available U _C | 50 / 60 Hz | V | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | | Pick-up | VA | VA | 144 | 240 | 240 | | u.l.t | VA | VA | 15 | 25 | 25 | | Ho l d-on | Watts | W | 6 | 9 | 9 | | | Pick-up (%Uc) 50Hz | %Uc | 75 - 110 | 75 - 110 | 75 - 110 | | Limits of operation | Pick-up (%Uc) 60Hz | %Uc | 85 - 110 | 85 - 110 | 85 - 110 | | | Drop-off (%Uc) | %Uc | 35 - 55 | 35 - 55 | 35 - 55 | | Electronic Coil | | | | | | | Voltage available Uc | 50 / 60 Hz | V | - | - | - | | Pick-up | VA | VA | - | - | - | | malata a | VA | VA | - | - | - | | Hold-on | Watts | W | - | - | - | | | Pick-up (%Uc) 50Hz | %Uc | - | - | - | | Limits of operation | Pick-up (%Uc) 60Hz | %Uc | - | - | - | | | Drop-off (%Uc) | %Uc | - | - | - | | On avating times | Closing time | ms | 11 - 20 | 15 - 24 | 15 - 24 | | Operating time | Opening time | ms | 6 - 13 | 6 - 23 | 6 - 23 | | Safe isolation between | coil and auxiliary contacts | V | 690 | 690 | 690 | | Overa ll dimensions H 3 | x W x D | mm³ | 123.6 x 55 x 122.1 | 135 x 70 x 135 | 135 x 70 x 135 | | Mounting clearance (fi | ront) | mm | 10 | 10 | 10 | | Weight | | kg | 1.1 | 1.6 | 1.6 | | | | | | | | # Pls refer ordering data for electronic coil version | MO 110 | MO*140 | MO*185 | MO [±] 225 | MO*250 | MO*300 | |----------------|--|-------------------|---------------------|-----------------|--| | CS 94578 | CS 95000 | CS 95001 | CS 95002 | CS 94441 | CS 94440 | | | | | | | | | 8 | 4 | 4 | 4 | 4 | 4 | | | 2 NO+2 NC | | 10 | 10 | 10 | 10 | 10 | 10 | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | 6 | 6 | 6 | 6 | 6 | 6 | | 4 | 4 | 4 | 4 | 4 | 4 | | 4 | 4 | 4 | 4 | 4 | 4 | | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | | 6 | 6 | 6 | 6 | 6 | 6 | | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 2 x 2.5 | | | | | | | | | | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | | | | 24, 42, 48, 110, 220, 240, 320, 360, 380, 415, 525 | | 240 | 1000 | 1000 | 1000 | 1400 | 1400 | | 25 | 50 | 50 | 50 | 65 | 65 | | 9 | 18 | 18 | 18 | 23 | 23 | | 75 - 110 | 75 - 110 | 75 - 110 | 75 - 110 | 75 - 110 | 75 - 110 | | 85 - 110 | 85 - 110 | 85 - 110 | 85 - 110 | 85 - 110 | 85 - 110 | | 35 - 55 | 35 - 55 | 35 - 55 | 35 - 55 | 35 - 55 | 35 - 55 | | | | | | | | | - | 110 - 240 | 110 - 240 | 110 - 240 | 110-240 | 110 - 240 | | - | 300 | 300 | 300 | 350 | 350 | | - | 17 | 17 | 17 | 17 | 17 | | - | 6 | 6 | 6 | 6 | 6 | | - | 75 - 110 | 75 - 110 | 75 - 110 | 75 - 110 | 75 - 110 | | - | 75 -110 | 75 - 110 | 75 - 110 | 75 - 110 | 75 - 110 | | - | < 60V | | 15 - 24 | 15 - 40 | 15 - 40 | 15 - 40 | 15 - 40 | 15 - 40 | | 6 - 23 | 7 - 20 | 7 - 20 | 7 - 20 | 7 - 20 | 7 - 20 | | 690 | 690 | 690 | 690 | 690 | 690 | | 135 x 70 x 135 | 197.5 x 120 x 170 | 197.5 x 120 x 170 | 197.5 x 120 x 170 | 225 x 145 x 190 | 225 x 145 x 190 | | 10 | 10 | 10 | 10 | 10 | 10 | | 1.6 | 4.24 | 4.6 | 4.6 | 6 | 6 | - > Range from 9A-300A AC-3e - Range 140A-300A available with conventional/universal AC/DC electronic coil version - > Low pick-up VA consumption - > Standardized accessories for 9A-110A & 140A-300A range - DIN Rail mounting facility upto 110A - > Compact dimensions saving precious panel space - > Lug as well as Lugless termination - > RoHS compliant | | | Units | MO 70 | MO 80 | MO 95 | |-------------------------------|--------------------------------------|-------|-------------------------|------------|--------------------------------| | Catalogue no. | | | CS 94574 | CS 94576 | CS 94577 | | Type of Terminal | | | | | Box Clamp with Slot Head Screw | | | Cable with Ferrule type Lug | mm | 1 x (10-35), 2 x (6-25) | | 1 x (25-70), 2 x (16-35) | | | Cable with Pin type Lug | mm | 1 x (10-35), 2 x (6-25) | | 1 x (25-70), 2 x (16-35) | | | Cable with Fork type Lug | mm | - | | - | | Main terminal capacity | Cable with Ring type Lug | mm | - | | - | | No.of cable x
(Max.Range - | Cable with Lug (spreader links) | (mmî) | 2 x 50 | 2 x 95 | 2 x 95 | | Min. Range) | Busbar (with spreader) | (mmî) | 18 | 25 | 25 | | - , | Busbar (without spreader) | mm | - | - | - | | | Solid conductors | mm | - | - | - | | | Multi strand conductors | mm | 1 x (10-35), 2 x (6-35) | | 1 x (25-70), 2 x (16-70) | | Tightening Torque | Main Pole Terminal | Nm | M6 / 4 | M8 / 5 | M8 / 5 | | rigitterining rorque | Aux. Pole/Coil/Add on block Terminal | Nm | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | | | DC 1 (110V) | Α | 80 | 100 | 100 | | DC ratings | DC 1 (220V) | Α | 80 | 100 | 100 | | with 3 poles in series | DC 3 (110V) | Α | 80 | 100 | 100 | | and AC coil operation | DC 3 (220V) | Α | 80 | 100 | 100 | | , | DC 5 (110V) | Α | 70 | 80 | 95 | | | DC 5 (220V) | Α | 35 | 63 | 70 | | | | | | | | $^{^{\}rm A}$ keeping (22mm-25mm) clearance $\,$ # Pls refer ordering data for electronic coil version | pH 20 40 J | yer .41 | 211 80 | 211 22 | 20 | | |------------|------------|------------|--------------------|------------|------------| | MO 110 | MO*140 | MO*185 | MO*225 | MO*250 | MO*300 | | CS 94578 | CS 95000 | CS 95001 | CS 95002 | CS 94441 | CS 94440 | | | | | Hexagon Head Screw | | | | | | - | | - | - | | | | - | | - | - | | | | - | | - | - | | | | 2 x 16 | | - | - | | 2 x 95 | 2 x 185 | 2 x 185 | 2 x 185 | 2 x 240 | 2 x 240 | | 25 | 28 | 28 | 28 | 40 | 40 | | - | 25 | 25 | 25 | 32 | 32 | | - | - | - | - | - | - | | | | - | | - | | | M8 / 5 | M10 / 20 | M10 / 20 | M10 / 20 | M10 / 30 | M10/30 | | M3.5 / 1.1 | M3.5 / 1.2 | | 120 | 140 | 185 | 225 | 260 | 300 | | 120 | 140 | 185 | 225 | 260 | 300 | | 120 | 140 | 185 | 225 | 260 | 300 | | 120 | 140 | 185 | 225 | 260 | 300 | | 110 | 140 | 185 | 225 | 250 | 300 | | 80 | 125 | 185 | 225 | 250 | 300 | # **Accessories** Side Mounted Single Pole Add-on RTO Relay **MO** Contactor Surge Suppressor Top Mounted Four Pole Add-on # **Accessories Features** # Add-on auxiliary contact block, suitable for all MO contactors MO Top Add-on Block Mo Side
Add-on Block | Description | Type designation | Mounting Position | Contacts | Terminal Marking | Cat. Nos. | |---------------|------------------|---------------------------|-------------|------------------------------------|--------------| | | MO-SA1L | Side Mounted First Left | 1 NO + 1 NC | 23 - 24, 31 - 32 | CS945800000 | | | MO-SA1R | Side Mounted First Right | 1 NO + 1 NC | 33 - 34, 41 - 42 | CS945810000* | | | MO-SA2L | Side Mounted Second Left | 1 NO + 1 NC | 53 - 54, 61 - 62 | CS945820000 | | | MO-SA2R | Side Mounted Second Right | 1 NO + 1 NC | 73 - 74, 81 - 82 | CS945830000* | | | MO-SA | Top Mounted Single Pole | 1 NO | 53 - 54 | CS945850000 | | | MO-SA | Top Mounted Single Pole | 1 NC | 51 - 52 | CS945860000 | | MO 9A-110A | MO-TA1 | Top Mounted Two Pole | 2 NO | 53 - 54, 63 - 64 | CS945910000 | | 571 11071 | MO-TA2 | Top Mounted Two Pole | 1 NO + 1 NC | 53 - 54, 61 - 62 | CS945920000 | | | MO-TA2 | Top Mounted Two Pole | 2 NC | 51 - 52, 61 - 62 | CS945930000 | | | MO-TA4 | Top Mounted Four Pole | 4 NO | 53 - 54, 63 - 64, 73 - 74, 83 - 84 | CS945940000 | | | MO-TA4 | Top Mounted Four Pole | 3 NO + 1 NC | 53 - 54, 63 - 64, 73 - 74, 81 - 82 | CS945950000 | | | MO-TA4 | Top Mounted Four Pole | 2 NO + NC | 53 - 54, 63 - 64, 71 - 72, 81 - 82 | CS945960000 | | | MO-TA4 | Top Mounted Four Pole | 1 NO + 3 NC | 53 - 54, 61 - 62, 71 - 72, 81 - 82 | CS945970000 | | | MO-TA4 | Top Mounted Four Pole | 4 NC | 51 - 52, 61 - 62, 71 - 72, 81 - 82 | CS945980000 | | | MO-HA1L | Side Mounted First Left | 1 NO + 1 NC | 13 - 14, 21 - 22 | CS950330000 | | NAO 140A 200A | MO-HA1R | Side Mounted First Right | 1 NO + 1 NC | 33 - 34, 41 - 42 | CS950340000 | | MO 140A-300A | MO-HA2L | Side Mounted Second Left | 1 NO + 1 NC | 53 - 54, 61 - 62 | CS950350000 | | | MO-HA2R | Side Mounted Second Right | 1 NO + 1 NC | 73 - 74, 81 - 82 | CS950360000 | $[\]star$ Right side add-on block can not be mounted on MO frame 0 (9 to 18 A). MO Spreader Link Kit ## **Mechanical Interlock Kit** | Description | Cat. No. | |----------------------------|-------------| | MO 9-110 | CS945840000 | | MO frame 4 with MO frame 4 | CS943900000 | | MO frame 4 with MO frame 5 | CS943910000 | | MO frame 5 with MO frame 5 | CS943930000 | Note: MO MIL Kit contains inbuilt 2 NC contacts. ### **Spreader Link Kit** | • | | | | | |--------------------------|-------------|--|--|--| | Description | Cat. No. | | | | | MO 9 - 45 [#] | CS942740000 | | | | | MO 50 - 70 [#] | CS940930000 | | | | | MO 80 - 110 [#] | CS940940000 | | | | | MO 140 - 225# | CS910570000 | | | | | MO 250 - 300 | CS909400000 | | | | [#] Spreader Link Kit consists of six moulded links with phase barriers # **Accessories Features** ## **Connecting Links** These are connecting links which connects MO Contactor and MMS as a starter. These links eliminate complete power wiring of the starter. End user has to connect only the incomer cable at MMS and load at load end of contactor. It is Contactor **MMS link** quick and easy to build a starter with direct connecting links. These links are available for DOL, Reverse DOL and Star Delta combination. These are available for MO contactor upto 45A and MMS frame-1 (MOG S1/H1/H1M). ## **DOL Starter - Link** # **Accessories** ## **Star Delta Starter - Link** ## **Reverse DOL Starter - Link** # **Ordering Information** # **Connecting Links** | Description | Link set contains | Cat. No. | |--|---|-------------| | Connecting Link Kit DOL (MO 9-18A) | MMS to contactor link | CS903960000 | | Connecting Link Kit for DOL (MO25-45A) | MMS to contactor link | CS903910000 | | Connecting Link Kit for REV DOL (MO25-45A) | MMS to contactor link
Paralleling link
Reversing link | CS905480000 | | Connecting Link Kit REV DOL (MO 9-18A) | MMS to contactor link
Paralleling link
Reversing link | CS905460000 | | Connecting Link Kit Star-Delta (MO9-18A) | MMS to contactor link
Paralleling link
Reversing link
Star shorting link | CS905490000 | | Connecting Link Kit Star-Delta(MO25-45A) | MMS to contactor link
Paralleling link
Reversing link
Star shorting link | CS905470000 | ## **MO Contactors** | Туре | AC1 Rating
(A) | AC3 Rating
(A) | Cat. Nos.* | |---------------------|-------------------|-------------------|------------| | MO 9 (1 NO + 1 NC) | 30 | 9 | CS94833 | | MO 12 (1 NO + 1 NC) | 32 | 12 | CS94834 | | MO 18 (1 NO + 1 NC) | 32 | 18 | CS94835 | | MO 25 | 45 | 25 | CS94567 | | MO 32 | 50 | 32 | CS94568 | | MO 40 | 50 | 40 | CS94569 | | MO 45 | 50 | 45 | CS94570 | | MO 50 | 100 | 50 | CS94572 | | MO 60 | 100 | 60 | CS94573 | | MO 70 | 100 | 70 | CS94574 | | MO 80 | 125 | 80 | CS94576 | | MO 95 | 125 | 95 | CS94577 | | MO 110 | 140 | 110 | CS94578 | | MO 140 | 250 | 140 | CS95000 | | MO 185 | 275 | 185 | CS95001 | | MO 225 | 275 | 225 | CS95002 | | MO 250 | 400 | 250 | CS94441 | | MO 300 | 500 | 300 | CS94440 | | MO 140 [#] | 250 | 140 | CS95042 | | MO 185 [#] | 275 | 185 | CS95047 | | MO 225 [#] | 275 | 225 | CS95052 | | MO 250 [#] | 400 | 250 | CS94456 | | MO 300 [#] | 500 | 300 | CS94464 | ## **Ordering Information** #### **Surge Suppressor** | Suitable for Contactors | Suitable for coil voltage | Cat. No. | |-------------------------------|---------------------------|-------------| | MO Frame - 0/1
MO0 Control | 110V, AC | CS91706A000 | | | 220-320V, AC | CS91706B000 | | MO C Frame - 1 | 360-415V, AC | CS91706D000 | | MO Frame - 2 | 110V, AC | CS91707A000 | | MO C Frame - 2 | 220-320V, AC | CS91707B000 | | | 360-415V, AC | CS91707D000 | | Suitable for Contactors | Suitable for coil voltage | Cat. No. | |--------------------------------|---------------------------|-------------| | MO Everes 2 | 110V, AC | CS91708A000 | | MO Frame - 3
MO C Frame - 3 | 220-320V, AC | CS91708B000 | | | 360-415V, AC | CS91708D000 | | MO Frama 4/F | 24-110V, AC | CS91854A000 | | MO Frame - 4/5 | 220-240V, AC | CS91854B000 | | | 360-525V, AC | CS91854D000 | #### **MO Spares** | Туре | Spare Contact Kit | Spare Coil * | |---------------------|-------------------|--------------| | MO 9 (1 NO + 1 NC) | CS94843 0000 | | | MO 12 (1 NO + 1 NC) | CS948440000 | CS94841 | | MO 18 (1 NO + 1 NC) | CS948450000 | | | MO 25 | CS96383 0000 | | | MO 32 | CS963840000 | CS96317 | | MO 40 | CS96385 0000 | C396317 | | MO 45 | CS96386 0000 | | | MO 50 | CS96387 0000 | | | MO 60 | CS96388 0000 | CS96318 | | MO 70 | CS96389 OOOO | | | MO 80 | CS96390 0000 | | | MO 95 | CS96391 0000 | CS96319 | | MO 110 | CS963920000 | | | MO 140 | CS903570000 | | | MO 185 | CS90358 0000 | CS90356 | | MO 225 | CS90359 0000 | | | MO 250 | CS944440000 | CS94442 | | MO 300 | CS944430000 | C594442 | | MO 140 [#] | CS903570000 | | | MO 185 [#] | CS903580000 | CS90855 | | MO 225 [#] | CS90359 0000 | | | MO 250 [#] | CS944440000 | CC00720 | | MO 300 [#] | CS944430000 | CS90738 | ^{*} Add 4 digit suffix as per required coil voltage given below. #### **Ordering Suffix for Coil Voltages** | Std Coil Voltage | 24 | 42 | 48 | 110 | 220 | 240 | 320 | 360 | 380 | 415 | 525 | |------------------------------|------|------|------|------|------|------|------|------|------|------|------| | Ordering Suffix - 50 / 60 Hz | G000 | H000 | J000 | A000 | K000 | B000 | R000 | C000 | L000 | D000 | M000 | [#] Universal AC/DC electronic coil version [#] Ordering Suffix for coil voltage band 110 - 240 V is BOOO, 240-415V is DOOO ## **Electrical Life Curves** #### **Utilisation Category AC-3** #### **Utilisation Category AC-4** ## **Electrical Life Curves** MO 9-18 MO 25-110 MO 140-300 ## **Electrical Life Curves** #### **Contact Travel Diagram** #### **Mounting Position** All dimensions in mm. MO Frame 0: 9, 12, 18 #### **Overall Dimensions with Auxiliary Contact Block** #### **Overall Dimensions with Mechanical Interlock** MO Frame I: 25, 32, 40, 45 #### **Overall Dimensions with Auxiliary Contact Block** #### **Overall Dimensions with Mechanical Interlock** #### MO Frame II: 50, 60, 70 #### **Overall Dimensions with Auxiliary Contact Block** #### **Overall Dimensions with Mechanical Interlock** #### MO Frame III: 80, 95, 110 **Overall Dimensions with Auxiliary Contact Block** #### MO Frame III: 80, 95, 110 **Overall Dimensions with Mechanical Interlock** Note: Mechanical interlock kit can be fitted even with side auxiliary contacts in that case width will increase by 12 mm per auxiliary contact block. #### MO 140/185,225 #### **Overall Dimensions** #### **Overall Dimensions with Spreader Link** #### MO 250/300 #### **Overall Dimensions** #### **Overall Dimensions with Spreader Link** All dimensions in mm. RTO Thermal Overload Relays complement MO range of contactors and can be directly mounted on them. The relays are ambient temperature compensated and are phase failure sensitive. The relays have a front access to START and STOP/RESET buttons and are provided with three contacts for Alarm, Trip and Start. ### **Salient Features** ## THERMAL OVERLOAD RELAYS Lauritz Knudsen introduces RTO range of Thermal Overload Relays to complement the MO range of contactors. RTO thermal overload relays are available in 26 ranges and 3 frame sizes. The range is available from 0.23A to 375A. RTO range of Thermal Overload Relays provide protections against overload and single phasing and are modular in design. - > Visual status indication-tripped / non-tripped from front - > Phase failure sensitive - > Ambient temperature compensated - › Auto manual / Reset function - > Test function-simulates the tripping of the Relay from the front - > Front access to START and STOP / RESET buttons - > Three contacts: Alarm, Trip and Start - > Isolated alarm circuit (N.O.) contact - > Sealable in OFF condition - > Sealable transparent top cover - > Direct mounting on MO contactors #### Accessories **Features** - > Separate mounting kit - > Reset cord ## **Technical Details** | | | | | | 000 | | | | |
-----------------------------------|-------------|---|---|--|--|--|--|--|--| | Туре | Units | RTO-1 | RTO-2 | RTO-3 | RTO-4 | | | | | | Main Circuit | | | | | | | | | | | Conformance to Standards | | | IS/IEC 60 | 947-4-1 | | | | | | | Mounting | | | Direct / Separate | | Separate | | | | | | Direct Mounting on Contactors | | MO 9 - 45 | MO 50 - 70 | MO 80 - 110 | MO 140 - 300 | | | | | | Degree of Protection | | | IP 20 | | | | | | | | Rated Insulation Voltage U | V | | 1000 | | | | | | | | Rated Impulse Withstand Uimp | kV | | 8 | | | | | | | | Rated Operational Voltage | ٧ | | 41 | 5 | | | | | | | Type of Operation | | | Direct Acting, Trip | Free Mechanism | | | | | | | Trip Class | Α | | class 10 | A, Fixed | | | | | | | Temp Compensation | °C | | -20°C to |) +55°C | | | | | | | Main Terminal
Capacity (Cable) | mm² | Solid -
2 x 2.5 to 10
Finely Stranded -
2 x 2.5 to 6 | Solid -
2 x 6 to 35
Finely stranded -
2 x 6 - 25 | Solid -
2 x 10 to 70
Finely stranded -
2 x 10 to 50 | Solid -
2 X 2.5 to 150
Finely stranded -
2 X 2.5 to 150 | | | | | | Tightening Torque | Nm | 2.5 | 4 | 5 | 30 | | | | | | Type of Screw | | M4 | M6 | M8 | M12 | | | | | | Auxiliary Circuit | | | | | | | | | | | | | | 1NO - Alarr | n | | | | | | | No. of Contacts | 1NO - Start | | | | | | | | | | | | 1NC - Trip | | | | | | | | | Rated Insulation Voltage | V | | 1000 | | | | | | | | Rated Impulse Withstand | kV | | 8 | | | | | | | | AC-15 rating at 415 V, 50 Hz | Α | | 2 | | | | | | | | Thermal Current | Α | | 6 | | | | | | | | Terminal Capacity | | 2 x 2.5 sq. mm, Solid or finely stranded. | | | | | | | | | Tightening torque | | 1.5 Nm | | | | | | | | | Type of screw | | M3, Class 6.8 | | | | | | | | ## **Ordering Information** #### **RTO Thermal Overload Relays** | Туре | Range (A) | Cat. Nos. | |--------|-------------|-------------| | ,, | 0.23 - 0.41 | CS9635500F0 | | | 0.31 - 0.55 | CS9635500G0 | | | 0.55 - 0.85 | CS9635500J0 | | | 0.78 - 1.2 | CS9635500L0 | | | 1.2 - 2.0 | CS9635500NO | | | 1.9 - 2.8 | CS9635500P0 | | | 2.4 - 3.6 | CS9635500Q0 | | RTO-1 | 3.5 - 5.2 | CS9635500S0 | | | 4.6 - 6.7 | CS9635500TO | | | 6.7 - 9.7 | CS9635500V0 | | | 8.5 - 12.5 | CS9635500A0 | | | 12.5 - 18.5 | CS9635600C0 | | | 17 - 25.5 | CS9635600D0 | | | 25 - 37 | CS9635600E0 | | | 35 - 45 | CS9635600G0 | | | 5 - 7.5 | CS9636600U0 | | | 7 - 11 | CS9636600V0 | | | 10.5 - 16 | CS9636600B0 | | RTO-2 | 15 - 21 | CS9636600C0 | | 1110 2 | 20 - 31 | CS9636600E0 | | | 30 - 43 | CS9636600F0 | | | 40 - 57 | CS963660OSO | | | 50 - 75 | CS9636700J0 | | | 23 - 30 | CS9087300E0 | | | 29 - 38 | CS9630300Q0 | | RTO-3 | 37 - 49 | CS9630400G0 | | | 47 - 62 | CS9631200T0 | | | 60 - 78 | CS9631300J0 | | | 75 - 110 | CS9631400K0 | | | 23.4 - 36 | CS9709600G0 | | | 36 - 60 | CS9709600J0 | | | 57 - 84 | CS9709600K0 | | RTO-4 | 72 - 108 | CS9709600L0 | | | 105 - 156 | CS9709600M0 | | | 138 - 201 | CS9709600N0 | | | 201 - 291 | CS9709600Q0 | | | 255 - 375 | CS9709600R0 | #### **Accessories for RTO Relays** **Separate Mounting Kit** | Suitable for | Cat. No. | |--------------|-------------| | RTO-1 Relay | CS963350000 | | RTO-2 Relay | CS963060000 | | RTO-3 Relay | CS963070000 | #### Reset cord | Suitable for | Cat. No. | |--------------|-------------| | RTO-1 Relay | CS963350000 | | RTO-2 Relay | CS963060000 | | RTO-3 Relay | CS963070000 | ## **I-T Characteristics** #### **RT01** #### **RT02** ## **I-T Characteristics** #### **RTO3** #### **RT04** RTO-1 Relay On MO Frame O Contactor (9/12/18A) RTO-1 Relay On **MO Frame 1 Contactor (25/32/40/45A)** **RTO-1 with Separate Mounting Kit RSO-1** #### RTO-2 Relay On MO Frame 2 Contactor (50/60/70A) #### **RTO-2 with Separate Mounting Kit RSO-2** ## RTO-3 Relay On MO Frame 3 Contactor (80/85/110A) #### **RTO-3 with Separate Mounting Kit RSO-3** #### RTO-4 Relay On MO Frame 4/5 Contactor (140/180/225/250/300A) ## MNX 2 & 3 Pole Power Contactors MNX power contactors are mainly used in motor feeder and control system applications. The range, available from 9A to 650A (AC-3) provides a reliable performance across diverse conditions like high ambient temperature, humidity etc. Standardized accessories and spares are available for the entire range. # REACH OUT TO RELIABILITY - > Range from 9-650A Ac3 - › Coil on top design 95A and above - > Built-in 2 NO + 2 NC auxiliary contacts for 95A & above | | | Units | MNX 9 | MNX 12 | MNX 18 | MNX 22 | |---|---|----------|---------------|-------------------|--------------------|----------------| | Catalogue No. | 2 Pole | | CS 90232 | CS 90234 | CS 90236 | CS 90238 | | Catalogue No. | 3 Pole | | CS 94106 / 7* | CS 94108 / 9* | CS 94100 / 1* | CS 94980 / 81* | | Conformance to standards | | | | | | | | Power Contacts | | | | | | | | Rated insulation voltage, Ui | | V | 690 | 690 | 690 | 690 | | Rated impulse withstand volta | age, U _{imp} | kV | 8 | 8 | 8 | 8 | | | 240 V AC | kW | 2.2 | 3.0 | 4.0 | 5.5 | | Rated kW | 415 V AC | kW | 4.0 | 5.5 | 9.3 | 11.0 | | nateu KVV | 500 V AC | kW | 5.5 | 7.5 | 9.3 | 11.0 | | Rated making capacity | 240 V AC | Α | 450 | 450 | 450 | 450 | | nated making capacity | 415 - 500 V AC | Α | 450 | 450 | 450 | 450 | | Rated breaking capacity | 240 V AC | Α | 200 | 250 | 250 | 250 | | nated breaking capacity | 415 - 500 V AC | Α | 200 | 250 | 250 | 250 | | | Utilization category AC-1 | Α | 25 | 30 | 30 | 32 | | | Utilization category AC-2 | Α | 9 | 12 | 18 | 22 | | Rated operational current,
le at 55 °C/60 °C | Utilization category AC-3 | Α | 9 | 12 | 18 | 22 | | Motor duty : 3Ø, 415 V, 50 Hz | Utilization category AC-4 | Α | 9 | 12 | 18 | 22 | | | Utilization category AC-4 (2,00,000 operations) | Α | 5.5 | 7.1 | 8 | 8.5 | | | | | | | | | | | 1 Seconds | Α | 250 | 300 | 300 | 300 | | | 10 Seconds | Α | 105 | 145 | 145 | 176 | | Permissible short | 30 Seconds | Α | 70 | 90 | 90 | 102 | | time ratings | 1 Minute | Α | 60 | 80 | 80 | 80 | | | 10 Minute | Α | 30 | 40 | 40 | 40 | | | 15 Minute | Α | 25 | 30 | 30 | 30 | | Mechanical life, No. of operati | ng cycles | millions | 15 | 15 | 15 | 15 | | | Mechanical | cy/hr | 7200 | 7200 | 7200 | 7200 | | Max. frequency of | Utilization category AC-1 | cy/hr | 3000 | 3000 | 3000 | 3000 | | operations: | Utilization category AC-2 | cy/hr | 750 | 750 | 750 | 750 | | Operating cycles/hr | Utilization category AC-3 | cy/hr | 750 | 750 | 750 | 750 | | | Utilization category AC-4 | cy/hr | 300 | 300 | 300 | 300 | | Vibration resistance conformi | ng to IEC 60068-2-6 | | | | | | | Ambient temperature | Service temperature | °C | | | | | | around the device | Storage temperature | °C | | | | -40°C to +80°C | | Altitude without deration | | m | | | | | | Degree of Pollution | | | | | | | | Degree of protection | | | | | | | | Protective treatment as per IE | C 60068 - 2 - 30 | | | | | | | Watt loss per pole | Utilization category AC-1 | W | 1.5 | 2 | 2 | 2.2 | | watt 1033 per pole | Utilization category AC-3 | W | 0.5 | 0.2 | 0.8 | 0.8 | | Type of Terminal | | | | Philip and Slot H | ead Combination Sc | rew | | | | | | | | | **MNX 2&3 Pole Power Contactors** - > Range from 9-650A Ac3 - › Coil on top design 95A and above - > Built-in 2 NO + 2 NC auxiliary contacts for 95A & above | | | 11 | MANYO | MANY 10 | MANY 10 | MANY OO | | | |--|-------------------------------------|----------|------------------------------------|---|------------------------------------|------------------------------------|---------------|--| | | 0 D-1- | Units | MNX 9 | MNX 12 | MNX 18 | MNX 22 | | | | Catalogue No. | 2 Pole | | CS 90232 | CS 90234 | CS 90236 | CS 90238 | | | | 3 Pole
Conformance to standards | | | CS 94106 / 7* | CS 94108 / 9* | CS 94100 / 1* | CS 94980 / 81* | | | | Conformance to star | | | | | | 6 | | | | | Cable with Lug | mm² | 6 | 6 | 6 | 6 | | | | Maximum Main
terminal capacity | Cable with Lug (spreader links) | mm² | - | - | - | - | | | | | Solid conductors | mm² | 2 x 4 | 2 x 4 | 2 x 4 | 2 x 4 | | | | | Multi strand conductors | mm² | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | | | | Tightening Torque | Main Pole Terminal | Nm | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | M4 / 1.3 | | | | | Aux Pole/Coil/Add on block Terminal | Nm | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | | | | , , | nst short circuit | | HF 20 | HF 32 | HF 32 | HF 40 | | | | • | | | | | | | | | | | • | | 8 | 8 | 8 | 8 | | | | No. of built-in auxilia | ry contacts | | 1 NO or 1 NC | | | | Conventional therma | • | Α | 10 | 10 | 10 | 10 | | | | Endurance of auxilia | ry Contacts | millions | 0.5 | 0.5 | 0.5 | 0.5 | | | | | 24-110 V | Α | 6 | 6 | 6 | 6 | | | | Tightening Torque Fuse protection aga Auxiliary Contacts No. of additional au No. of built-in auxili Conventional therm Endurance of auxilia AC-15 rating, 50 Hz DC-13 rating Terminal capacity (Coil | 220-240 V | Α | 4 | 4 | 4 | 4 | | | | 50 Hz | 360-440 V | Α | 4 | 4 | 4 | 4 | | | | | 525-600 V | Α | 1.2 | 1.2 | 1.2 | 1.2 | | | | | 24 V | Α | 6 | 6 | 6 | 6 | | | | | 110-125 V | Α | 1,1 | 1,1 | 1,1 |
1.1 | | | | DO 10 matin m | 250 V | Α | 0.55 | 0.55 | 0.55 | 0.55 | | | | DC-13 rating | 480 V | Α | 0.31 | 0.31 | 0.31 | 0.31 | | | | | 500 V | Α | 0.27 | 0.27 | 0.27 | 0.27 | | | | | 600 V | Α | 0.2 | 0.2 | 0.2 | 0.2 | | | | Terminal capacity (S | olid or multi strand conductors) | mm² | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | | | | Coil | | | | | | | | | | Voltage available Uc | 50 / 60 Hz | ٧ | 24, 42, 110, 220,
240, 415, 525 | | | | Pick-up | VA | VA | 68 | 68 | 68 | 68 | | | | | VA | VA | 11 | 11 | 11 | 11 | | | | Hold-on | Watts | W | 4 | 4 | 4 | 4 | | | | | Pick-up (%Uc) 50Hz | %Uc | 65 - 120 | 65 - 120 | 65 - 120 | 65 - 120 | | | | Limits of operation | Pick-up (%Uc) 60Hz | %Uc | 85 - 110 | 85 - 110 | 85 - 110 | 85 - 110 | | | | · | Drop-off (%Uc) | %Uc | 35 - 50 | 35 - 50 | 35 - 50 | 35 - 50 | | | | | Closing time | ms | 10 - 12 | 10 - 12 | 10 - 12 | 10 - 12 | | | | Operating time | Opening time | ms | 7 - 18 | 7 - 18 | 7 - 18 | 7 - 18 | 10
0
12 | | | Safe isolation between | | V | 400 | 525 240, 415, 525 240, 415, 525 240, 415, 525 68 68 68 11 11 11 4 4 4 0 65 - 120 65 - 120 65 - 120 0 85 - 110 85 - 110 85 - 110 0 35 - 50 35 - 50 35 - 50 2 10 - 12 10 - 12 10 - 12 7 - 18 7 - 18 7 - 18 400 400 400 88 83 x 45 x 88 83 x 45 x 88 83 x 45 x 88 10 10 10 | | | | | | Safe isolation between coil and auxiliary contacts Overall dimensions H x W x D | | mm³ | 83 x 45 x 88 | | | | | | | Mounting clearance | | mm | 10 | | | | | | | Weight | () | kg | 0.36 | 0.36 | 0.36 | 0.36 | | | | Weight | | кg | 0.00 | 0.00 | 0.00 | 0.00 | | | - > Range from 9-650A Ac3 - › Coil on top design 95A and above - > Built-in 2 NO + 2 NC auxiliary contacts for 95A & above | | | Units | MNX 9 | MNX 12 | MNX 18 | MNX 22 | |--------------------------------------|-------------|-------|---------------|---------------|---------------|----------------| | Catalogue No. | 2 Pole | | CS 90232 | CS 90234 | CS 90236 | CS 90238 | | Catalogue No. | 3 Pole | | CS 94106 / 7* | CS 94108 / 9* | CS 94100 / 1* | CS 94980 / 81* | | Conformance to standards | | | | | | | | | DC 1 (110V) | Α | 9 | 12 | 18 | 22 | | | DC 1 (220V) | Α | 9 | 12 | 18 | 22 | | DC ratings
with 3 poles in series | DC 3 (110V) | Α | 9 | 12 | 18 | 22 | | and AC coil operation | DC 3 (220V) | Α | 9 | 12 | 18 | 22 | | and Ao con operation | DC 5 (110V) | Α | 9 | 12 | 18 | 22 | | | DC 5 (220V) | Α | 6 | 7.5 | 9 | 12 | | | • | • | • | | | | | | | | |---|----------|----------|----------|----------|----------|----------|--|--|--|--| | | MNX 25 | MNX 32 | MNX 40 | MNX 50 | MNX 70 | MNX 80 | | | | | | | CS 90240 | CS 90241 | CS 90242 | CS 94061 | CS 94062 | CS 94063 | | | | | | | CS 94110 | CS 94111 | CS 94190 | CS 97075 | CS 97076 | CS 97077 | | | | | | IS/IEC 60947-4-1, IEC 60947-4-1, EN 60947-4-1 | | | | | | | | | | | | | 25 | 32 | 40 | 50 | 63 | 80 | | | | | | | 25 | 32 | 40 | 50 | 63 | 80 | | | | | | | 25 | 32 | 40 | 50 | 63 | 80 | | | | | | | 25 | 32 | 40 | 50 | 63 | 80 | | | | | | | 25 | 32 | 40 | 50 | 63 | 80 | | | | | | | 20 | 25 | 50 | 50 | 50 | 63 | | | | | - > Range from 9-650A Ac3 - > Coil on top design 95A and above - > Built-in 2 NO + 2 NC auxiliary contacts for 95A & above | | | Units | MNX 95 | MNX 110 | MNX 140 | MNX 185 | |---|---|----------|----------|----------|----------|----------| | Catalogue No. | 2 Pole | | CS 94064 | CS 94065 | CS 94066 | CS 94978 | | oatalogue 140. | 3 Pole | | CS 94136 | CS 94137 | CS 94138 | CS 94139 | | Conformance to standards | | | | | | | | Power Contacts | | | | | | | | Rated insulation voltage, Ui | | V | 1000 | 1000 | 1000 | 1000 | | Rated impulse withstand volta | age, U _{imp} | kV | 8 | 8 | 8 | 8 | | | 240 V AC | kW | 25.0 | 30.0 | 40.0 | 55.0 | | Rated kW | 415 V AC | kW | 45.0 | 55.0 | 75.0 | 90.0 | | | 500 V AC | kW | 55.0 | 75.0 | 90.0 | 110.0 | | Rated making capacity | 240 V AC | Α | 1680 | 1680 | 1800 | 2220 | | nated making capacity | 415 - 500 V AC | Α | 1680 | 1680 | 1800 | 2220 | | Rated breaking capacity | 240 V AC | Α | 1400 | 1400 | 1600 | 1850 | | nated breaking capacity | 415 - 500 V AC | Α | 1400 | 1400 | 1600 | 1850 | | | Utilization category AC-1 | Α | 160 | 160 | 160 | 250 | | | Utilization category AC-2 | Α | 95 | 110 | 140 | 185 | | Rated operational current,
le at 55°C / 60°C | Utilization category AC-3 | Α | 95 | 110 | 140 | 185 | | Motor duty : 3Ø, 415 V, 50 Hz | Utilization category AC-4 | Α | 95 | 110 | 140 | 160 | | , , , | Utilization category AC-4 (2,00,000 operations) | А | 53 | 58 | 66 | 90 | | AC-8b rating at 415V, 50 Hz | | Α | 123.5 | 143 | 182 | 240.5 | | | 1 Seconds | Α | 1320 | 1320 | 1320 | 2000 | | | 10 Seconds | Α | 800 | 880 | 1120 | 1500 | | Permissible short | 30 Seconds | Α | 500 | 509 | 647 | 1000 | | time ratings | 1 Minute | Α | 400 | 400 | 458 | 800 | | | 10 Minute | Α | 170 | 170 | 170 | 350 | | | 15 Minute | Α | 160 | 160 | 160 | 320 | | Mechanical life, No. of operati | ng cycles | millions | 10 | 10 | 10 | 10 | | | Mechanical | cy/hr | 3600 | 3600 | 3600 | 3600 | | Max. frequency of | Utilization category AC-1 | cy/hr | 3000 | 3000 | 3000 | 3000 | | operations: | Utilization category AC-2 | cy/hr | 750 | 750 | 750 | 750 | | Operating cycles/hr | Utilization category AC-3 | cy/hr | 750 | 750 | 750 | 750 | | | Utilization category AC-4 | cy/hr | 300 | 300 | 300 | 250 | | Vibration resistance conformi | ng to IEC 60068-2-6 | | | | | | | Ambient temperature around | Service temperature | °C | | | | | | the device ' | Storage temperature | °C | | | | | | Altitude without deration | | m | | | | | | Degree of Pollution | | | | | | | | Degree of protection | | | | | | | | Protective treatment as per IE | C 60068 - 2 - 30 | | | | | | | Wett less per nale | Utilization category AC-1 | W | 13.5 | 13.5 | 17.6 | 16.6 | | Watt loss per pole | Utilization category AC-3 | W | 5 | 7 | 11.7 | 9.4 | | | | | | | | | ## **Accessories features** | MNX 225 | MNX 250 | MNX 300 | MNX 400 | MNX 550 | MNX 650 | |------------|----------------|------------------|---------------------------------------|----------|--------------| | CS94979 | CS 90301 | CS 94346 | CS 94069 | CS 90243 | CS 90578 | | CS 94140 | CS94141 | CS90280 | CS 94144 | CS 94145 | CS 96327 | | | | IS/IEC 60947-4-1 | , IEC 60947-4-1, EN 6094 ⁻ | 7-4-1 | | | | | | | | | | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | 8 | 8 | 8 | 8 | 8 | 8 | | 63.0 | 63.0 | 90.0 | 110.0 | 160.0 | 180.0 | | 110.0 | 132.0 | 160.0 | 200.0 | 315.0 | 355.0 | | 132.0 | 142.0 | 180.0 | 250.0 | 365.0 | - | | 2400 | 3000 | 4500 | 4500 | 5500 | 6500 | | 2400 | 3000 | 4500 | 4500 | 5500 | 6500 | | 2000 | 2500 | 4000 | 4000 | 4500 | 5200 | | 2000 | 2500 | 4000 | 4000 | 4500 | 5200 | | 300 | 300 | 400 | 425 | 650 | 800 | | 225 | 250 | 300 | 400 | 550 | 650 | | 225 | 250 | 300 | 400 | 550 | 650 | | 200 | 200 | 235 | 275 | 300 | 400 | | 100 | 120 | 140 | 150 | 150 | - | | 292.5 | 325 | 390 | 520 | 715 | 845 | | 2500 | 2500 | 3500 | 4600 | 7000 | 7000 | | 1800 | 2000 | 2400 | 4400 | 6400 | 6400 | | 1200 | 1200 | 1500 | 3100 | 4500 | 4500 | | 1000 | 1000 | 1100 | 2500 | 3500 | 3500 | | 450 | 450 | 550 | 900 | 1400 | 1400 | | 400 | 400 | 500 | 840 | 1300 | 1300 | | 10 | 10 | 10 | 10 | 10 | 10 | | 3600 | 3600 | 3600 | 3600 | 1200 | 1200 | | 3000 | 3000 | 3000 | 3000 | 750 | 750 | | 750 | 750 | 750 | 750 | 750 | 750 | | 750 | 750 | 750 | 750 | 750 | 750 | | 150 | 150 | 150 | 150 | 150 | 150 | | | 5300Hz : 3g | | | | | | | -20°C to +55°C | | | | | | | -15℃ to 80°C | | | | | | | 3000 | | | | | | | 3 | | | | | | | IP 20 | | | | | | 10.4 | TH | 17 C | 40 | E2 7 | 61.0 | | 19.4
15 | 20.8 | 17.6
12.7 | 20.7 | 52.7 | 61.2
48.6 | | 15 | 15 | | | 45 | 40.0 | | | | Sic | t Head Screw | | | - > Range from 9-650A Ac3 - Coil on top design 95A and above - > Built-in 2 NO + 2 NC auxiliary contacts for 95A & above | | | | 6 6 16 | B 16 16 | 6 6 6 | Co. Hely Co. | |---------------------------------------|---|-----------------|---|---|---|---| | | | Units | MNX 95 | MNX 110 | MNX 140 | MNX 185 | | Catalogue No. | 2 Pole | | CS 94064 | CS 94065 | CS 94066 | CS 94978 | | Catalogue No. | 3 Pole | | CS 94136 | CS 94137 | CS 94138 | CS 94139 | | Conformance to sta | ndards | | | | | | | | Cable with Lug | mm² | 1 x 120 | 1 x 120 | 1 x 120 | 1 x 185 | | Maximum Main | 2 Cable with Lug (spreader links) | mm ² | 2 x 25 x 3 | 2 x 25 x 3 | 2 x 25 x 3 | 2 x 30 x 5 | | terminal capacity | 2 Solid conductors | mm | - | - | - | - | | | 2 Multi strand conductors | mm | - | - | - | - | | Tightening Torque | Main Pole Terminal | Nm | M8 / 11 | M8 / 11 | M8 / 11 | M10 / 14 | | rigitteiling rorque | Aux.Pole/Coil/Add on block Terminal | Nm | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | | Fuse protection aga | ninst short circuit | | HN,0 200 | HN,0 200 | HN,1 250 | HN,2 250 | | Auxiliary Contacts | | | | | | | | No. of additional au | x. contact possible | | 4 | 4 | 4 | 4 | | No. of built-in auxili | iary contacts | | 2 NO + 2 NC | | Conventional therm | al current, Itt at 55°C | Α | 10 | 10 | 10 | 10 | | Endurance of auxilia | ary Contacts | millions | 0.5 | 0.5 | 0.5 | 0.5 | | | 24 - 110 V | Α | 6 | 6 | 6 | 6 | | AC-15 rating, | 220 - 240 V | Α | 4 | 4 | 4 | 4 | | 50 Hz | 360 - 440 V | Α | 4 | 4 | 4 | 4 | | | 525 - 600 V | Α | 1.2 | 1.2 | 1.2 | 1.2 | | | 24 V | Α | 6 | 6 | 6 | 6 | | | 110-125 V | Α | 1.1 | 1.1 | 1.1 | 1.1 | | DC-13 rating | 250 V | Α | 0.55 | 0.55 | 0.55 | 0.55 | | DC-13 fatting | 480 V | Α | 0.31 | 0.31 | 0.31 | 0.31 | | | 500 V | Α | 0.27 | 0.27 | 0.27 | 0.27 | | | 600 V | Α | 0.2 | 0.2 | 0.2 | 0.2 | | Terminal capacity (| Solid or
multi strand conductors |) mm² | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | | Coil | | | | | | | | Voltage available U | □ 50 / 60 Hz | ٧ | 24/29, 42/50, 110/132,
220/264, 240/288,
415/500, 525/630 | 24/29, 42/50, 110/132,
220/264, 240/288,
415/500, 525/630 | 24/29, 42/50, 110/132,
220/264, 240/288,
415/500, 525/630 | 110/132, 220/264,
240/288, 415/500,
525/630 | | Pick-up | VA | VA | 550 | 550 | 550 | 960 | | Hold-on | VA | VA | 36 | 36 | 36 | 56 | | Hold-on | Watts | W | 10 | 10 | 10 | 16 | | | Pick-up (%Uc) 50Hz | %Uc | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | | | Pick-up (%Uc) 60Hz | %Uc | 85 - 110 | 85 - 110 | 85 - 110 | 85 - 110 | | Limits of operation | | %Uc | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | | Limits of operation | Drop-off (%Uc) | 70UC | 00 00 | 00 00 | | | | · | Drop-off (%Uc) Closing time | ms | 20 - 40 | 20 - 40 | 20 - 40 | 20 - 45 | | Operating time | Closing time Opening time | | | | 20 - 40
10 - 25 | 20 - 45
10 - 25 | | Operating time | Closing time | ms | 20 - 40 | 20 - 40 | | | | Operating time | Closing time Opening time een coil and auxiliary contacts | ms
ms | 20 - 40
10 - 25 | 20 - 40
10 - 25 | 10 - 25 | 10 - 25 | | Operating time Safe isolation between | Closing time Opening time een coil and auxiliary contacts H x W x D | ms
ms
V | 20 - 40
10 - 25
690 | 20 - 40
10 - 25
690 | 10 - 25
690 | 10 - 25
690 | ## **Accessories features** | MNX 225 MNX 250 MNX 300 MNX 400 MNX 550 MNX 650 CS94979 CS 90301 CS 94346 CS 94069 CS 90243 CS 90578 CS 94140 CS 94141 CS 90280 CS 94144 CS 94145 CS 96327 IS/IEC 60947-4-1, IEC 60947-4-1, IEC 60947-4-1, EN 60947-4-1 T | | | on to | No. 12 | in the second se | NY SS | |---|--|--|--|--|--|-------------------------------| | CS 94140 CS94141 CS90280 CS 94144 CS 94145 CS 96327 IS/IEC 60947-4-1, IEC 60947-4-1, EN 60947-4-1 1 x 185 1 x 185 2 x 240 / 1 x 300 2 x 50 x 5 - 2 x 30 x 5 2 x 30 x 5 2 x 50 x 5 2 x 50 x 5 2 x 50 x 5 2 x 60 x 5 - - - - - - - - M10 / 14 M10 / 14 M12 / 27 | MNX 225 | MNX 250 | MNX 300 | MNX 400 | MNX 550 | MNX 650 | | IS/IEC 60947-4-1, IEC 60947-4-1, EN 60947-4-1 | CS94979 | CS 90301 | CS 94346 | CS 94069 | CS 90243 | CS 90578 | | 1 x 185 1 x 185 2 x 240 / 1 x 300 2 x 240 / 1 x 300 2 x 50 x 5 - 2 x 30 x 5 2 x 30 x 5 2 x 50 x 5 2 x 50 x 5 2 x 60 x 5 - - - - - - - - - - - - M10 / 14 M10 / 14 M12 / 27 | CS 94140 | CS94141 | CS90280 | CS 94144 | CS 94145 | CS 96327 | | 2 x 30 x 5 2 x 30 x 5 2 x 50 x 5 2 x 50 x 5 2 x 60 x 5 -< | IS/IEC 609 | 947-4-1, IEC 60947-4-1, EN | 1 60947-4-1 | | | | | | 1 x 185 | 1 x 185 | 2 x 240 / 1 x 300 | 2 x 240 / 1 x 300 | 2 x 50 x 5 | - | | M10 / 14 M10 / 14 M12 / 27 M13 / 25 M14 / 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 x 30 x 5 | 2 x 30 x 5 | 2 x 50 x 5 | 2 x 50 x 5 | 2 x 50 x 5 | 2 x 60 x 5 | | M3.5 / 1.1 | - | - | - | - | - | - | | M3.5 / 1.1 | - | - | - | - | - | - | | HN,3 315 HN,2 400 HN,3 500 HN,3 630 HN,3 800 4 4 4 4 4 4 4 4 2 NO + 2 NC 10 10 10 10 10 10 10 10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 | M10 / 14 | M10 / 14 | M12 / 27 | M12 / 27 | M12 / 27 | M12 / 27 | | 4 4 4 4 4 4 2 NO+2 NC 10 10 10 10 10 10 0.5 0.5 0.5 0.5 0.5 0.5 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1.2 1.2 1.2 1.2 1.2 6 6 6 6 6 1.1 1.1 1.1 1.1 1.1 1.1 | M3.5 / 1.1 | | 2 NO + 2 NC 10 10 10 10 10 10 10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1.2 | HN,3 315 | HN,3 315 | HN,2 400 | HN,3 500 | HN,3 630 | HN,3 800 | | 2 NO + 2 NC 10 10 10 10 10 10 10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1.2 | | | | | | | | 10 0.5 <t< td=""><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td></t<> | 4 | 4 | 4 | 4 | 4 | 4 | | 0.5 0.5 0.5 0.5 0.5 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 1.2 1.2 1.2 1.2 1.2 6 6 6 6 6 1.1 1.1 1.1 1.1 1.1 1.1 | 2 NO + 2 NC | | 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 1.2 1.2 1.2 1.2 1.2 1.2 6 6 6 6 6 1.1 1.1 1.1 1.1 1.1 1.1 | 10 | 10 | 10 | 10 | 10 | 10 | | 4 4 4 4 4 4 4 4 4 4 4 4 1.2 1.2 1.2 1.2 1.2 1.2 6 6 6 6 6 1.1 1.1 1.1 1.1 1.1 1.1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | 4 4 4 4 4 4 1.2 1.2 1.2 1.2 1.2 1.2 6 6 6 6 6 6 1.1 1.1 1.1 1.1 1.1 1.1 | 6 | 6 | 6 | 6 | 6 | 6 | | 1.2 1.2 1.2 1.2 1.2 1.2 6 6 6 6 6 6 1.1 1.1 1.1 1.1 1.1 1.1 | | 4 | 4 | 4 | 4 | 4 | | 6 6 6 6 6 6 1.1 1.1 1.1 1.1 1.1 1.1 | | | | | | | | 1.1 1.1 1.1 1.1 1.1 1.1 | | | | | | | | | | | | | | | | 0.55 0.55 0.55 0.55 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | | | | | | | | | 0.31 0.31 0.31 0.31 0.31 | | | | | | | | 0.27 0.27 0.27 0.27 0.27 | | | | | | | | 0.2 0.2 0.2 0.2 0.2 0.2 | | | | | | | | 2 x 2.5 110/132, 220/264, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288,
415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 525/630 110/132, 220/264, 240/288, 415/500, 240/288, 415/500, 240/288, 415/500, 240/288, 415/500, 240/288, 415/500, 240/288, 415/500, 240/288, 415/500, 240/288, 415/500, 240/288, 415/500, 2 | 110/132, 220/264,
240/288, 415/500, | 110/132, 220/264,
240/288, 415/500, | 110/132, 220/264,
240/288, 415/500, | 110/132, 220/264,
240/288, 415/500, | | 2 x 2.5
110, 220, 240, 415 | | 960 960 2100 2100 1000 1000 | 960 | 960 | 2100 | 2100 | 1000 | 1000 | | 56 56 95 95 25 25 | | | | | | | | 16 16 35 35 10 10 | | | | | | | | 80 - 110 80 - 110 80 - 110 80 - 110 80 - 110 80 - 110 | | | | | | | | 85 - 110 | | | | | | | | 35 - 65 35 - 65 35 - 65 35 - 65 35 - 65 | | | | | | | | 20 - 45 20 - 45 20 - 45 40 -70 40 -70 | | | | | | | | 10 - 25 | | | | | | | | 690 690 690 690 690 | | | | | | | | 208.2 x 147 x 181 | | | | | | | | 10 mm 10 mm 10 mm 10 mm 10 mm | | | | | | | | 5.2 5.2 9.7 9.7 10.4 10.4 | | | 9.7 | | | | Range from 9-650A Ac3 Coil on top design 95A and above > Built-in 2 NO + 2 NC auxiliary contacts for 95A & above | | | Units | MNX 95 | MNX 110 | MNX 140 | MNX 185 | |---|-------------|-------|----------|----------|----------|----------| | Catalogue No. | 2 Pole | | CS 94064 | CS 94065 | CS 94066 | CS 94978 | | Catalogue No. | 3 Pole | | CS 94136 | CS 94137 | CS 94138 | CS 94139 | | Conformance to standards | | | | | | | | | DC 1 (110V) | Α | 95 | 110 | 140 | 185 | | | DC 1 (220V) | Α | 95 | 110 | 140 | 185 | | DC ratings
with 3 poles in series
and AC coil operation | DC 3 (110V) | Α | 95 | 110 | 140 | 185 | | | DC 3 (220V) | Α | 95 | 110 | 140 | 185 | | and the conjugation | DC 5 (110V) | Α | 95 | 110 | 140 | 185 | | | DC 5 (220V) | Α | 95 | 110 | 125 | 185 | | | | | | | | | ## **Accessories features** ## **Ordering Information** #### **Accessories for MNX** #### **Add-on Blocks** Top Add-on Block MNX / MCX Side Add-on Blocks #### **Surge Suppressors** MNX S1 MNX S3 MNX S4 #### **Mechanical Interlock Kits** MNX M1 (MNX 9-40) MNX M7 (MNX 185-250) MNX M8 (MNX 300-650) **MNX Spare Coils** #### **Spares for MNX** **MNX Spare Kits** | Accessories | | | | | | | | | | |--------------------------|----------------------------------|---------------|---------------|----------------|-----------------|------------------|------------------|------------------|--| | | | | MNX
9 - 40 | MNX
50 - 80 | MNX
95 - 140 | MNX
185 - 250 | MNX
300 - 400 | MNX
550 - 650 | | | | Mounting | Configuration | Cat. No. | | | | | 4 NO | CS94112 | CS94112 | - | - | - | - | | | | | 3 NO + 1 NC | CS94113 | CS94113 | - | - | - | - | | | | | 2 NO + 2 NC | CS94114 | CS94114 | - | - | - | - | | | | | 1 NO + 3 NC | CS94115 | CS94115 | - | - | - | - | | | | Тор | 4 NC | CS94116 | CS94116 | - | - | - | - | | | | ТОР | 2 NO | CS94117 | CS94117 | - | - | - | - | | | Add | | 1 NO + 1 NC | CS94118 | CS94118 | - | - | - | - | | | on
Block ^s | | 2 NC | CS94119 | CS94119 | - | - | - | - | | | | | 1 NO | CS94120 | CS94120 | - | - | - | - | | | | | 1 NC | CS94121 | CS94121 | - | - | - | - | | | | First Left | 1 NO + 1 NC | CS94220 | CS94201 | CS94205 | CS94205 | CS94205 | CS94205 | | | | First Right | 1 NO + 1 NC | CS94221 | CS94202 | CS94206 | CS94206 | CS94206 | CS94206 | | | | Second Left | 1 NO + 1 NC | - | CS94203 | CS94207 | CS94207 | CS94207 | CS94207 | | | | Second Right | 1 NO + 1 NC | - | CS94204 | CS94208 | CS94208 | CS94208 | CS94208 | | | Mecha | nical Interlock Kit ^s | | CS94126 | CS94197 | CS94198 | CS94199 | CS94200 | CS94200 | | | Surge : | Suppressors* | | CS94166 | CS94163 | CS94164 | CS94164 | CS94165 | - | | ^{*} Add 4 Digit Coil Suffix as per required voltage \$ Ordering suffix : 0000 #### **Ordering Suffix for Coil Voltages** | Std Coil voltage | 24 | 42 | 48 | 110 | 220 | 240 | 320 | 360 | 380 | 415 | 525 | |----------------------------|------|------|------|------|------|------|------|------|------|------|------| | Ordering Suffix - 50/60 Hz | G000 | H000 | J000 | A000 | K000 | B000 | R000 | C000 | L000 | D000 | M000 | | | 0 | | |-----------|------------|--------------| | | Spares | | | Contactor | Sparè Kits | Spare Coil * | | MNX 9 | CS94123 | | | MNX 12 | CS94124 | | | MNX 18 | CS94125 | | | MNX 22 | CS94269 | CS94105 | | MNX 25 | CS94127 | | | MNX 32 | CS94128 | | | MNX 40 | CS94147 | | | MNX 50 | CS94150 | | | MNX 70 | CS94151 | CS94192 | | MNX 80 | CS94152 | | | MNX 95 | CS94153 | | | MNX 110 | CS94154 | CS94196 | | MNX 140 | CS94155 | | | MNX 185 | CS94156 | | | MNX 225 | CS94157 | CS94194 | | MNX 250 | CS90310 | | | MNX 300 | CS90283 | 0004105 | | MNX 400 | CS94161 | CS94195 | | MNX 550 | CS94162 | CS94193 | | MNX 650 | CS96336 | CS94193 | | | | | # **Terminal Marking of Addon Block** | Mounting | Add-ON Block | Contact Combination | | MNX 9 - 40 | |-------------------------|--------------|-------------------------|-------------|----------------------------| | Modifiling Add-ON Block | | Contact Combination | Cat. No. | Terminal Markings | | | | 4 NO - 4 Po l e | CS941120000 | 53-54, 63-64, 73-74, 83-84 | | | | 3 NO + 1 NC - 4 Pole | CS941130000 | 53-54, 61-62, 73-74, 83-84 | | | MNX-A1 | 2 NO + 2 NC - 4 Pole | CS941140000 | 53-54, 61-62, 71-72, 83-84 | | | ф | 1 NO + 3 NC - 4 Pole | CS941150000 | 53-54, 61-62, 71-72, 81-82 | | Тор | | 4 NC - 4 Pole | CS941160000 | 51-52, 61-62, 71-72, 81-82 | | ТОР | | 2 NO - 2 Pole | CS941170000 | 53-54, 63-64 | | | | 1 NO + 1NC - 2 Pole | CS941180000 | 53-54, 61-62 | | | MNX-A2 | 2 NC - 2 Pole | CS941190000 | 51-52, 61-62 | | | | 1 NO - 2 Pole | CS941200000 | 53-54 | | | | 1 NC - 2 Po l e | CS941210000 | 61-62 | | Side | MNX-A12S/ | 1 NO + 1 NC (1st Left) | CS942200000 | 23-24, 31-32 | | | | 1 NO + 1 NC (1st Right) | CS942210000 | | | Mounting | Add ON Block | Contact Combination | | MNX 50 - 80 | |-----------------------|--------------|-------------------------|-------------|----------------------------| | Mounting Add-ON Block | | Contact Combination | Cat. No. | Terminal Markings | | | | 4 NO - 4 Pole | CS941120000 | 53-54, 63-64, 73-74, 83-84 | | | | 3 NO + 1 NC - 4 Pole | CS941130000 | 53-54, 61-62, 73-74, 83-84 | | | MNX-A1 | 2 NO + 2 NC - 4 Pole | CS941140000 | 53-54, 61-62, 71-72, 83-84 | | | Top | 1 NO + 3 NC - 4 Pole | CS941150000 | 53-54, 61-62, 71-72, 81-82 | | Тор | | 4 NC - 4 Pole | CS941160000 | 51-52, 61-62, 71-72, 81-82 | | ТОР | | 2 NO - 2 Pole | CS941170000 | 53-54, 63-64 | | | | 1 NO + 1 NC - 2 Pole | CS941180000 | 53-54, 61-62 | | | MNX-A2 | 2 NC - 2 Pole | CS941190000 | 51-52, 61-62 | | | | 1 NO - 2 Po l e | CS941200000 | 53-54 | | | | 1 NC - 2 Pole | CS941210000 | 61-62 | | | | 1 NO + 1 NC (1st Left) | CS942010000 | 13-14, 21-22 | | Side | MANIV AA | 1 NO + 1 NC (1st Right) | CS942020000 | 43-44, 31-32 | | Side | MNX-A4 | 1 NO + 1 NC (2nd Left) | CS942030000 | 53-54, 61-62 | | | | 1 NO + 1 NC (2nd Right) | CS942040000 | 73-74, 81-82 | ### **Utilisation Category AC-1** #### **Utilisation Category AC-2** ### **Utilisation Category AC-3** #### **Utilisation Category AC-4** #### **Contact Travel Diagram** ### **Mounting Position** ### **Terminal Designation** #### **MNX Frame I: 9A - 22A** #### **MNX Frame II: 25A - 40A** #### MNX Frame III: 50A - 80A #### **MNX Frame VI: 95A - 140A** MNX Frame V: 185A - 250A MNX Frame VI: 300 - 400 #### MNX Frame VI: 550A - 650A ### MNX Frame I: 9A, 12A, 18A, 22A #### MNX Frame I: 9A, 12A, 18A, 22A (with MIL Kit) **Note:** Dimension for 2 Pole contactor is same as dimension for 3 Pole contactor. #### MNX Frame II: 25A, 32A, 40A #### MNX Frame II: 25A, 32A, 40A (with MIL Kit) Dimension for 2 Pole contactor is same as dimension for 3 Pole contactor. ### MNX Frame III: 50A, 70A, 80A #### MNX Frame III: 50A, 70A, 80A (with MIL Kit) #### Note: Dimension for 2 Pole contactor is same as dimension for 3 Pole contactor. #### MNX Frame IV: 95A, 110A, 140A #### MNX Frame IV: 95A, 110A, 140A (with MIL Kit) #### Note: Dimension for 2 Pole contactor is same as dimension for 3 Pole contactor. ### MNX Frame V: 185A, 225A, 250A ### MNX Frame V: 185A, 225A, 250A (with MIL Kit) #### Note: Dimension for 2 Pole contactor is same as dimension for 3 Pole contactor. ### MNX Frame VI: 300A, 400A, 550A, 650A | | 175 C J C J | |------------------|-----------------| | | | | _ T + | | | | | | | | | | | | B 4 17 - | MNX400 | | | 8 8 | | | | | + | | | → | Mounting Holes | | * | for - M8 Screws | | | 200 (2NO + 2NC) | | | 225 (4NO + 4NC) | | Contactor | MNX 300/400/550 | MNX 650 | |-----------|-----------------|---------| | А | 241 | 259 | | В | 275 | 296 | | С | 62.5 | 74 | | D | 35 | 40 | | Е | 55 | 56 | | F | 5 | 6 | ### MNX Frame VI : 300A, 400A, 550A, 650A (with MIL Kit) | Contactor | MNX 300/400/550 | MNX 650 | |-----------|-----------------|---------| | b | 275 | 296 | Dimension for 2 Pole contactor is same as dimension for 3 Pole contactor. ### **MI Contactors** | | | | | | | | 9 9 | | |---
-----------------|---------------------|---------------------|---------------------|---------------------|---------------|---------------------|--| | | | MI 6 | MI 9 | MI 12 | MI 18 | MI 22 | MI 25 | | | Catalogue no. | | CS90401 | CS90402 | CS90403 | CS90404 | CS90405 | CS90406 | | | Frame | | 1 | 1 | 1 | 1 | 1 | 2 | | | Conformance to standards | | | IS/IE | C 60947-4-1, IEC | 60947-4-1, EN 6 | 0947-4-1, | | | | Rated operational voltage Ue | | 415 V | | | Rated insulation voltage Ui | | 690 V | | | Rated impulse withstand voltage Uin | np | 8 kV | | | Service temperature | | (-20 to 55°C) | | | Making capacity | | 60 | 90 | 120 | 180 | 220 | 250 | | | Breaking capacity 415 V | | 48 | 72 | 96 | 144 | 176 | 200 | | | Rated operational current le (A) | AC-1 | 25 | 25 | 30 | 30 | 32 | 45 | | | @ 415 V | AC-3 | 6A/3kW/4hp | 9A/4kW/5.5hp | 12A/5.5 kW/7.5hp | 18A /9.3 kW/12.5hp | 22A/11kW/15hp | 25A/13 kW/17.5hp | | | Mechanical life no. of operating cycles | | 15 mi ll ion | 15 million | 10 mi ll ion | | | Switching frequency operating cycles/Hr | Mechanical | 3600 | 3600 | 3600 | 3600 | 3600 | 3600 | | | | AC-1 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | | | | AC-3 | 750 | 750 | 750 | 750 | 750 | 750 | | | No. of built in auxiliary contacts | | 1NO | 1NO | 1NO | 1NO | 1NO | - | | | No. of additional auxiliary contacts p | oossible | 8 | 8 | 8 | 8 | 8 | 8 | | | Coil characteristics | | | | | | | | | | Voltage available @ 50 Hz* | (V) | | | | | | | | | | VA | 68 | 68 | 68 | 68 | 68 | 68 | | | Pick-up | PF | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | | | | Watts | 55.76 | 55.76 | 55.76 | 55.76 | 55.76 | 55.76 | | | | VA | 11 | 11 | 11 | 11 | 11 | 11 | | | Hold-on | PF | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | | | | Watts | 4 | 4 | 4 | 4 | 4 | 4 | | | Limits of operation | Pick-up (% Uc) | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | | | Limits of operation | Drop-off (% Uc) | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | | | Dimensions | | | | | | | | | | | Н | 83 | 83 | 83 | 83 | 83 | 84.8 | | | Overall Dimensions (mm) | W | 45 | 45 | 45 | 45 | 45 | 45 | | | | D | 88.45 | 88.45 | 88.45 | 88.45 | 88.45 | 96.2 | | | | | | | | | | | | ### *Ordering Suffix for Coil Voltages | Std Coil voltage at 50 Hz | 110 | 220 | 240 | 415 | |---------------------------|------|------|------|------| | Ordering Suffix | A000 | K000 | B000 | D000 | | | M.I | 111 132 A23 | 11. 31.3 51.3 E. 31.3 M. 44. | 11. 31. 13. 13. 13. 13. 13. 13. 13. 13. | 111 AU 113 | MI 150 | MI 150 | MI 150 | |-----------------|-----------------|---------------------|------------------------------|---|---------------------|---------------------|---------------------|---------------------| | MI 32 | MI 40 | MI 45 | MI 50 | MI 70 | MI 80 | MI 95 | MI 120 | MI 150 | | CS90407 | CS90408 | CS90704 | CS90705 | CS90706 | CS90707 | CS90724 | CS90725 | CS90726 | | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | | | | | | | | | | | | 415 V | 690 V | 8 kV | (-20 to 55°C) | 320 | 400 | 450 | 500 | 700 | 800 | 950 | 1200 | 1500 | | 256 | 320 | 360 | 400 | 560 | 640 | 760 | 960 | 1200 | | 55 | 55 | 85 | 85 | 100 | 100 | 160 | 160 | 160 | | 32A/17kW/22.5hp | 40A/22.5kW/30hp | 45A/25kW/34hp | 50A/26kW/35hp | 70A/37kW/50hp | 80A/40kW/54hp | 95A/45kW/ 60hp | 120A/55kW/75hp | 150A/80kW/110hp | | 10 million | 10 million | 10 mi ll ion | 10 million | 10 million | 10 mi ll ion | | 3600 | 3600 | 3600 | 3600 | 3600 | 3600 | 3600 | 3600 | 3600 | | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | | - | - | - | - | - | - | - | - | - | | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | | | | | | | | | | | | | 110, | 220, 240, 415 | | | | | | 68 | 68 | 190 | 190 | 190 | 190 | 550 | 550 | 550 | | 0.82 | 0.82 | 0.77 | 0.77 | 0.77 | 0.77 | 0.64 | 0.64 | 0.64 | | 55.76 | 55.76 | 146.3 | 146.3 | 146.3 | 146.3 | 352 | 352 | 352 | | 11 | 11 | 21 | 21 | 21 | 21 | 36 | 36 | 36 | | 0.36 | 0.36 | 0.26 | 0.26 | 0.26 | 0.26 | 0.28 | 0.28 | 0.28 | | 4 | 4 | 5.5 | 5.5 | 5.5 | 5.5 | 10 | 10 | 10 | | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | | | | | | | | | | | | 84.8 | 84.8 | 109 | 109 | 109 | 109 | 175 | 175 | 175 | | 45 | 45 | 80 | 80 | 80 | 80 | 137 | 137 | 137 | | 96.2 | 96.2 | 127.7 | 127.7 | 127.7 | 127.7 | 152 | 152 | 152 | ### **Ordering Information** | | MI contactor | | | | | | | | | | |------|-----------------|-----------------|---------|---------------|----------|--|--|--|--|--| | Size | AC-3 Rating (A) | AC-1 Rating (A) | Туре | Aux. Contacts | Cat. No. | | | | | | | | 6 | 25 | MI 6 | 1 NO | CS90401 | | | | | | | | 0 | 25 | IVII O | 1 NC | CS90409 | | | | | | | | 9 | 25 | MI 9 | 1 NO | CS90402 | | | | | | | | 9 | 25 | IVII 5 | 1 NC | CS90410 | | | | | | | Fr 1 | 12 | 30 | MI 12 | 1 NO | CS90403 | | | | | | | 111 | 12 | 30 | IVII 12 | 1 NC | CS90411 | | | | | | | | 18 | 30 | MI 18 | 1 NO | CS90404 | | | | | | | | 10 | 30 | IVII 10 | 1 NC | CS90412 | | | | | | | | 22 | 32 | MI 22 | 1 NO | CS90405 | | | | | | | | 22 | 52 | IVII ZZ | 1 NC | CS90413 | | | | | | | | 25 | 45 | MI 25 | # | CS90406 | | | | | | | Fr 2 | 32 | 55 | MI 32 | # | CS90407 | | | | | | | | 40 | 55 | MI 40 | # | CS90408 | | | | | | | | 45 | 85 | MI 45 | # | CS90704 | | | | | | | Fr 3 | 50 | 85 | MI 50 | # | CS90705 | | | | | | | 11 5 | 70 | 100 | MI 70 | # | CS90706 | | | | | | | | 80 | 100 | MI 80 | # | CS90707 | | | | | | | | 95 | 160 | MI 95 | # | CS90724 | | | | | | | Fr 4 | 120 | 160 | MI 120 | # | CS90725 | | | | | | | | 150 | 160 | MI 150 | # | CS90726 | | | | | | | Accessories | | | | | | | | | |--------------------|--------------|---------------|-----------------------|------------------------|-------------------------|--|--|--| | | Mounting | Configuration | Cat. No.
MI 6 - 40 | Cat. No.
MI 45 - 80 | Cat. No.
MI 95 - 150 | | | | | | | 4 NO | CS906870000 | CS906870000 | - | | | | | | | 3 NO + 1NC | CS906880000 | CS906880000 | - | | | | | | | 2 NO + 2 NC | CS906890000 | CS906890000 | - | | | | | Add on | | 1 NO + 3 NC | CS906900000 | CS906900000 | - | | | | | Aux. | _ | 4 NC | CS906910000 | CS906910000 | - | | | | | Contact | Тор | 2 NO | CS906920000 | CS906920000 | - | | | | | Block | | 1 NO + 1 NC | CS906930000 | CS906930000 | - | | | | | | | 2 NC | CS906940000 | CS906940000 | - | | | | | | | 1 NO | CS906950000 | CS906950000 | - | | | | | | | 1NC | CS906960000 | CS906960000 | - | | | | | Add on | First left | 1 NO + 1 NC | CS906990000 | CS907430000 | CS907960000 | | | | | Aux. | First right | 1 NO + 1 NC | CS907000000 | CS907440000 | CS907970000 | | | | | Contact | Second left | 1 NO + 1 NC | - | CS907450000 | CS907980000 | | | | | Block | Second right | 1 NO + 1 NC | - | CS907460000 | CS907990000 | | | | | Mechanical Interlo | ock kit | | CS906970000 | CS907200000 | CS907840000 | | | | | Surge Suppressor | | | CS90698B000 | CS90719B000 | CS90783A000 | | | | | Surge Suppressor | 220V/240V | | 00300300000 | 00301130000 | CS90783B000 | | | | | Surge Suppressor | 415V | | CS90698D000 | CS90719D000 | CS90783D000 | | | | ### *Ordering Suffix for Coil Voltages | Std Coil voltage at 50 Hz | 110 | 220 | 240 | 415 | |---------------------------|------|------|------|------| | Ordering Suffix | A000 | K000 | B000 | D000 | ### **Dimensions** Frame 1 (6A, 9A, 12A, 18A, 22A) Frame 2 (25A, 32A, 40A) Frame 3 (45A, 50A, 70A, 80A) Frame 4 (95A, 120A, 150A) ### **Selection Charts** #### **Fuseless Protection for DOL Starter Feeder** | SCPD Type | SCPD Type | Contactor Type | Relay Type | |-----------|-----------|----------------|------------------| | DN MCCB | MOG MMS | MI | MN | | | | MI 150 | 141 ALZ STE OR 1 | | Sr. No. | Moto | r: 3Ø, 415 | V, 50 Hz | Contactor | Overload Relay | | Overload Relay | | MMS / MCCB | | | |---------|------|------------|-------------|-----------|----------------|-----------|-----------------|------------|------------|--|--| | | hp | kW | FLC, In (A) | Туре | Туре | Range (A) | Туре | Rating (A) | | | | | 1 | 0.16 | 0.12 | 0.51 | MI 9 | - | - | MOG-S1 / MOG-H1 | 0.4 - 0.63 | | | | | 2 | 0.25 | 0.18 | 0.6 | MI 9 | - | - | MOG-S1/MOG-H1 | 0.63 - 1 | | | | | 3 | 0.33 | 0.25 | 0.8 | MI 9 | - | - | MOG-S1 / MOG-H1 | 0.63 - 1 | | | | | 4 | 0.5 | 0.37 | 1.2 | MI 9 | - | - | MOG-S1/MOG-H1 | 1 - 1.6 | | | | | 5 | 0.75 | 0.55 | 1.5 | MI 9 | - | - | MOG-S1 / MOG-H1 | 1 - 1.6 | | | | | 6 | 1 | 0.75 | 2 | MI 9 | - | - | MOG-S1/MOG-H1 | 1.6 - 2.5 | | | | | 7 | 1.5 | 1.1 | 2.7 | MI 9 | - | - | MOG-S1 / MOG-H1 | 2.5 - 4 | | | | | 8 | 1.75 | 1.3 | 3 | MI 9 | - | - | MOG-S1/MOG-H1 | 2.5 - 4 | | | | | 9 | 2 | 1.5 | 3.5 | MI 9 | - | - | MOG-S1 / MOG-H1 | 2.5 - 4 | | | | | 10 | 3 | 2.2 | 4.9 | MI 18 | - | - | MOG-S1/MOG-H1 | 4 - 6.3 | | | | | 11 | 4 | 3 | 6 | MI 18 | - | - | MOG-S1 / MOG-H1 | 4 - 6.3 | | | | | 12 | 5 | 3.7 | 7.5 | MI 25 | - | - | MOG-S1/MOG-H1 | 6.3 - 10 | | | | | 13 | 5.5 | 4 | 8.5 | MI 25 | - | - | MOG-S1 / MOG-H1 | 6.3 - 10 | | | | | 14 | 7.5 | 5.5 | 11 | MI 25 | - | - | MOG-S1/MOG-H1 | 9 - 13 | | | | | 15 | 10 | 7.5 | 14.5 | MI 25 | - | - | MOG-S1/MOG-H1 | 11 - 16 | | | | | 16 | 15 | 11 | 21 | MI 40 | - | - | MOG-S1/MOG-H1 | 19 - 25 | | | | | 17 | 17.5 | 13 | 24 | MI 50 | - | - | MOG-S1/MOG-H1 | 24 - 32 | | | | | 18 | 20 | 15 | 29 | MI 50 | - | - | MOG - H2 | 28 - 40 | | | | | 19 | 25 | 18.5 | 35 | MI 70 | - | - | MOG - H2 | 35 - 50 | | | | | 20 | 30 | 22 | 40 | MI 70 | - | - | MOG - H2 | 35 - 50 | | | | | 21 | 40 | 30 | 54 | MI 80 | - | - | MOG-H2 | 45 - 63 | | | | | 22 | 50 | 37 | 68 | MI 95 | MN5 | 66-110 | DN1-160M | 100 | | | | | 23 | 60 | 45 | 81 | MI 120 | MN5 | 66-110 | DN1-160M | 125 | | | | | 24 | 75 | 55 | 94 | MI 120 | MN5 | 66-110 | DN1-160M | 160 | | | | ### **Selection Charts** #### **Fuseless Protection for Star- Delt Starter Feeder** | SCPD Type | SCPD Type | Contactor Type | Relay
Type | |-----------|-----------|----------------|--| | DN MCCB | MOG MMS | MI | MN | | | | MI 150 | 11 342 553 FOR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Ratings at 3Ø, 415V, 50 Hz | | | (| Contactor Type | | | ad Relay | MMS /MCCB | | | |---------|----------------------------|------|------|-------------|----------------|-------|-------|----------|-----------|----------|------------| | Sr. No. | hp | kW | I (| A)
Phase | Star | Delta | Main | Туре | Range (A) | Туре | Rating (A) | | 1 | 0.33 | 0.25 | 0.8 | 0.5 | MI 9 | MI 9 | MI 9 | - | - | MOG-H1 | 0.63-1 | | 2 | 0.5 | 0.37 | 1.2 | 0.7 | MI 9 | MI 9 | MI 9 | - | - | MOG-H1 | 0.63-1 | | 3 | 0.75 | 0.55 | 1.5 | 0.9 | MI 9 | MI 9 | MI 9 | - | - | MOG-H1 | 1-1.6 | | 4 | 1 | 0.75 | 2 | 1.2 | MI 9 | MI 9 | MI 9 | - | - | MOG-H1 | 1.6-2.5 | | 5 | 1.5 | 1.1 | 2.7 | 1.6 | MI 9 | MI 18 | MI 18 | - | - | MOG-H1 | 2.5-4 | | 6 | 1.75 | 1.3 | 3 | 1.7 | MI 9 | MI 22 | MI 22 | - | - | MOG-H1 | 2.5-4 | | 7 | 2 | 1.5 | 3.5 | 2 | MI 9 | MI 22 | MI 22 | - | - | MOG-H1 | 2.5-4 | | 8 | 3 | 2.2 | 4.9 | 2.8 | MI 9 | MI 25 | MI 25 | - | - | MOG-H1 | 4-6.3 | | 9 | 4 | 3 | 6 | 3.5 | MI 9 | MI 25 | MI 25 | - | - | MOG-H1 | 6.3-10 | | 10 | 5 | 3.7 | 7.5 | 4.3 | MI 9 | MI 25 | MI 25 | - | - | MOG-H1 | 6.3-10 | | 11 | 5.5 | 4 | 8.5 | 4.9 | MI 9 | MI 25 | MI 25 | - | - | MOG-H1 | 6.3-10 | | 12 | 7.5 | 5.5 | 11 | 6.4 | M I 9 | MI 25 | MI 25 | - | - | MOG-H1 | 9-13 | | 13 | 10 | 7.5 | 14.5 | 8.4 | MI 18 | MI 32 | MI 32 | - | - | MOG-H1 | 14-20 | | 14 | 12.5 | 9.3 | 17.3 | 10 | MI 18 | MI 32 | MI 32 | - | - | MOG-H1 | 19-25 | | 15 | 15 | 11 | 21 | 12.1 | MI 18 | MI 32 | MI 32 | - | - | MOG-H1 | 19-25 | | 16 | 17.5 | 13 | 24 | 13.9 | MI 18 | MI 40 | MI 40 | - | - | MOG-H1 | 24-32 | | 17 | 20 | 15 | 29 | 16.7 | MI 25 | MI 40 | MI 40 | - | - | MOG-H1 | 24-32 | | 18 | 25 | 18.5 | 35 | 20.2 | MI 25 | MI 70 | MI 70 | - | - | MOG-H2 | 35-50 | | 19 | 30 | 22 | 40 | 23.1 | MI 32 | MI 70 | MI 70 | - | - | MOG-H2 | 45-63 | | 20 | 40 | 30 | 54 | 31.2 | MI 50 | MI 95 | MI 95 | MN12 | 28-46.5 | DN1-160M | 125 | | 21 | 50 | 37 | 68 | 39.3 | MI 50 | MI 95 | MI 95 | MN12 | 28-46.5 | DN1-160M | 160 | | 22 | 60 | 45 | 81 | 46.8 | MI 70 | MI 95 | MI 95 | MN12 | 42-69 | DN2-250M | 200 | | 23 | 75 | 55 | 94 | 54.3 | MI 70 | MI 95 | MI 95 | MN12 | 42-69 | DN2-250M | 200 | ### MN Thermal Overload Relays MN Thermal Overload Relays, available from 0.2A to 570A complement the MNX range of power contactors. The relays are ambient temperature compensated, and the unique double slide mechanism providers reliable protection against single phasing. MN 12L relays with trip class 30 are specially designed for long starting time applications. - > Available in 3 frame sizes from 0.2-570A - Direct mounting on MNX contactors - > Trip class 10A (30 available in MN 12L) - › Ambient temperature compensated - › Built-in single phasing protection | | | Units | MN 2 | MN 5 | MN 12 | MN 12L | | | |----------------------------|-------------|-----------------|---|-------------|-------------|-------------|--|--| | Conformanceto standards | | | IS/IEC 60947-4-1& IEC 60947-4-1 | | | | | | | Mounting | | | Direct | Direct | - | - | | | | Woulding | | | Separate | Separate | Separate | Separate | | | | Suitable for contactors | | | MNX 9, 12, 18 MNX 50, MNX 95, 110, 140, 185, 22, 25, 32, 40 70, 80 300, 400, 550, 6 | | | | | | | Rated insulationvoltage | Ui | V | 690 | 690 | 690 | 690 | | | | Rated impulsevoltage | Uimp | kV | 6 | 6 | 6 | 6 | | | | Service temperature | | °C | -5°C to +55°C | | | | | | | Start/OFF / Reset | | | 1 Start & OFF / Reset | | | | | | | Built-incontacts | | | 2 NO + 1 NC | | | | | 24 V | Α | 6 | 6 | 6 | 6 | | | | Rated operationalcurrent | 110 V | Α | 5 | 5 | 5 | 5 | | | | for AC-15 utilization | 220 V | Α | 3 | 3 | 3 | 3 | | | | categoryat 50 Hz | 380 / 415 V | Α | 2 | 2 | 2 | 2 | | | | | 500 V | Α | 2 | 2 | 2 | 2 | | | | Trip class | | А | 10 | 10 | 10 | 30 | | | | Max.frequencyof operations | | Cy / hr | 30 | 30 | 30 | 30 | | | | Main terminal capacity | Lug | mm ² | 10 | 50 | 240 | 240 | | | | Aux. terminalcapacity | Wires | mm ² | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | | | ### **I-T Characteristics** #### MN 2 / MN 5 / MN 12 Relay #### MN 2 / MN 5 / MN 12 Relay #### MN 12L Relay ### **Ordering Information** ### **MN Relays** **Relay Mounting Kit** Kit for Mounting MN5 Relay **DIN Rail Mounting Kit MN2 Relay** | Description | Cat. No. | Std. Pkg. (Nos.) | |---|-------------|------------------| | Push button unit for MK 1 / ML Relays | SS900040000 | 1 | | Push button extension unit for MN 2 Relays | SS949680000 | 100 | | Kit for Mounting MN 2 Relay on ML 1.5 contactor | SS947010000 | 50 | | Kit for Mounting MN 2 Relay separately (Direct Mounting Type) | SS947000000 | 50 | | Kit for Mounting MN 5 Relay on MNX 95 / 110 / 140 contactor | SS946380000 | 20 | | Kit for Mounting MN 5 Relay on ML 2 / ML 3 contactor | SS941510000 | 20 | | Kit for Mounting MN 5 Relay on ML 4 / ML 6 contactor | SS941520000 | 20 | | DIN Rail Mounting Kit Relay on MN 2 Relay | SS918870000 | 50 | ### **Relay Reset Cord For MN Relays** 650 mm 900 mm 1200 mm | Description | Cat. No. | Std. Pkg. (Nos.) | |-------------------------------|-------------|------------------| | MN Relay reset cord - 400 mm | SB942070000 | 1 | | MN Relay reset cord - 650 mm | SB942080000 | 1 | | MN Relay reset cord - 900 mm | SB942090000 | 1 | | MN Relay reset cord - 1200 mm | SB942100000 | 1 | ## **Ordering Information** | Туре | Range (A) | Cat. No. | |--------|-------------|-------------| | | 0.2 - 0.33 | SS9414100E0 | | | 0.3 - 0.5 | SS9414100G0 | | | 0.45 - 0.75 | SS9414100J0 | | | 0.6 - 1 | SS9414100K0 | | | 0.9 - 1.5 | SS9414100M0 | | | 1.4 - 2.3 | SS9414100P0 | | MN 2 | 2 - 3.3 | SS9414100Q0 | | IVIN Z | 3 - 5 | SS9414100S0 | | | 4.5 - 7.5 | SS9414100U0 | | | 6 - 10 | SS9414200V0 | | | 9 - 15 | SS9414200B0 | | | 14 - 23 | SS9414400D0 | | | 20 - 33 | SS9414500E0 | | | 24 - 40 | SS9414500F0 | | Туре | Range (A) | Cat. No. | |------|-----------|-------------| | | 9 - 15 | SS9413500B0 | | | 14 - 23 | SS9413500D0 | | | 20 - 33 | SS9413600E0 | | MN 5 | 30 - 50 | SS9413600G0 | | | 36 - 60 | SS9413600T0 | | | 45 - 75 | SS9413700J0 | | | 66 - 110 | SS9413700K0 | | Туре | Range (A) | Cat. No. | |-------|-----------|-------------| | | 28 - 46.5 | SB9421100G0 | | | 42 - 69 | SS9413800H0 | | | 60 - 100 | SS9413800K0 | | MN 12 | 90 - 150 | SS9413800M0 | | | 135 - 225 | SS9413800P0 | | | 180 - 300 | SS9413900Q0 | | | 270 - 450 | SS9413900R0 | | Туре | Range (A) | Cat. No. | |---------|-----------|-------------| | | 42 - 69 | SS9412700H0 | | | 60 - 100 | SS9412700K0 | | NAV 101 | 90 - 150 | SS9412700M0 | | MN 12L* | 135 - 225 | SS9412700P0 | | | 180 - 300 | SS9412700Q0 | | | 340 - 570 | SS9412700S0 | ^{*}For motors with long starting time ### **Thermal Overload Relay - Type MN** ### MN 2 (Separate Mounting) #### MN 5 (Separate Mounting) ### MN 12 / 12L (Relay) # MDX DC Coil 3 Pole Power Contactors MDX Power Contactors cater to all those applications where DC control supply is used. The range is available from 9A-110A AC-3 and the major applications are battery chargers, traction systems, UPS systems etc. Many critical installations like power generation equipment, crane terminals, hospital equipment also incorporate DC Coil contactors. # **Efficient Switching now with DC Control** #### MDX 50-80 with universal electronic AC/DC coil | | | | (2) (3) (3) (4) | | 3 3 3 3 | |--|---|------------------|-----------------|--|----------| | Type Designation | | Units | MDX 9 | MDX 12 | MDX 18 | | Catalogue no. | | | CS96564 | CS96565 | CS96566 | | Conformance to standards | | | | | | | Power contacts | | | | | | | No. of poles | | | 3 | 3 | 3 | | Rated insulation voltage Ui | | | 690 | 690 | 690 | | Rated impulse withstandvolta | age U _{imp} | kV | 6 | 6 | 6 | | Operational current Motor | Conventional free air
Thermal current I _{th} (40°C) | А | 25 | 28 | 32 | | duty: 3Ф, 415 V, 50 Hz | Utilization category AC-3 (55°C) | A / kW | 9 / 4.5 | 12 / 6.2 | 18/9 | | | 240V | | 2.2 | 3.2 | 4 | | Rated kW | 415V | | 4.5 | 6.2 | 9 | | | 690V | | 7.5 | 10 | 10 | | Rated making capacity | | А | 250 | 250 | 250 | | Rated breaking capacity (≤ 44 | 40 V) | А | 250 | 250 | 250 | | Operation current le for AC-4 U
at 415 V, 3Ф, 50 Hz for 20000 | | А | 4.9 | 7.9 | 8.5 | | Permissible short time ratings | 10s | А | 110 | 110 | 130 | | Mechanicallife | | million | 20 | 20 | 20 | | Electrical life at 415V, AC-3 U | tilizationcategory | million | 2 | 2 | 1.6 | | Max. frequency of operations | | cy/hr | 3600 | 3600 | 3600 | | Ambient Temperature | Service temperature | °C | | | | | around the device | Storage Temperature | | | CS96565 3 690 6 28 12 / 6.2 3.2 6.2 10 250 250 7.9 110 20 2 | | | Degree of Protection | From front | | | | | | Fuse protection against short | circuit, gG | | 25 | 32 | 32 | | Maximum altitude without der | ation | m | | | | | Auxliary contacts | | | | | | | No. of in built auxiliary contact | ets | | 1 NO | 1 NO | 1 NO | | Conventional thermal current | Ith at 55°C | А | 10 | 10 | 10 | | Terminal capacity | Flexible w/olug | mm ² | 1 - 6 | 1 - 6 | 1 - 6 | | теппппагсараспу | Flexible c/wlug | mm² | 6 | 6 | 6 | | Coil characteristics | | | | | | | Coil voltage available | | VDC | | | | | Average hold on coil consum | ption | Watts | 5.4 | 5.4 | 5.4 | | Limits of operation | Pick-up | % Uc | 70 - 125 | 70 - 125 | 70 - 125 | | Limits of operation | Drop-off | % U _c | 10 - 40 | CS96565 3 690 6 28 12 / 6.2 3.2 6.2 10 250 250 7.9
110 20 2 3600 32 1 NO 10 1 - 6 6 5.4 70 - 125 10 - 40 75 9 81 45 98.5 | 10 - 40 | | Pick-up | | VA | 75 | 75 | 75 | | Hold-on | | VA | 9 | 9 | 9 | | | Height | mm | 81 | 81 | 81 | | Overall dimensions | Width | mm | 45 | 45 | 45 | | Overall difficults | Depth | mm | 98.5 | 98.5 | 98.5 | | | Weight | Kg | 0.47 | 0.47 | 0.47 | | | | | | | | [#] Add on Block can be ordered separately. | MDX 25 | MDX 32 | MDX 38 | MDX 50* | MDX 65* | MDX 80* | MDX 95 | MDX 115 | |-----------|---------------------|-----------|-------------|-----------------|----------|--------------------|----------| | CS96567 | CS96552 | CS96553 | CS91584* | CS91585* | CS91586* | CS91587* | CS91588* | | IS/IEC | C 60947-4-1& IEC 6 | 0947-4-1 | | | | | | | | | | | | | | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 690 | 690 | 690 | 1000 | 1000 | 1000 | 1000 | 1000 | | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | | 32 | 56 | 56 | 90 | 110 | 125 | 125 | 125 | | 25 / 13.4 | 32 / 17 | 38 / 18.5 | 50 / 27.2 | 65 / 36 | 80 / 46 | 95 / 55 | 115 / 66 | | 7 | 8.8 | 11 | 15 | 18.5 | 22 | 27.6 | 33 | | 11 | 17 | 18.5 | 30 | 36 | 45 | 55 | 66 | | 18 | 22 | 22 | 37 | 45 | 55 | 74 | 80 | | 250 | 480 | 480 | 800 | 1090 | 1200 | 1200 | 1200 | | 250 | 480 | 480 | 800 | 1090 | 1200 | 1200 | 1200 | | 10 | 13.5 | 15.5 | 28 | 31 | 38 | 43 | 43 | | 160 | 320 | 320 | 390 | 390 | 480 | 760 | 880 | | 20 | 20 | 20 | 15 | 15 | 15 | 15 | 15 | | 1.2 | 1.6 | 1.4 | 1.5 | 1.4 | 1.3 | 1.2 | 0.8 | | 3600 | 3600 | 3600 | 1500 | 1500 | 1500 | 3600 | 3600 | | | | | (-50°C to - | + 70°C) | | | | | | | | (-60°C to - | + 80°C) | | | | | | IP20 | | | | | | | | 50 | 63 | 63 | 100 | 125 | 160 | 160 | 160 | | | 3000 | | | | | | | | | | | | | | | | | 1 NO | # | # | # | # | # | # | # | | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | 1 - 6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | | 6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | | | 24 / 48 / 110 / 220 | | 21-12 | 60-110,110-240V | AC/DC | 24 / 49 / | 110/220 | | 5.4 | 5.4 | 5.4 | 2.5 | 2.5 | 2.5 | 15 | 15 | | 70 - 125 | 70 - 125 | 70 - 125 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | | 10 - 40 | 10 - 40 | 10 - 40 | 20 - 55 | 20 - 55 | 20 - 55 | 10 - 25 | 10 - 25 | | 75 | 75 | 75 | 85 | 85 | 85 | 220 | 220 | | 9 | 9 | 9 | 4.4 | 4.4 | 4.4 | 18 | 18 | | 81 | 90 | 90 | 136 | 136 | 136 | 124 | 124 | | 45 | 45 | 45 | 55 | 55 | 55 | 75 | 75 | | 98.5 | 107.5 | 107.5 | 114.5 | 114.5 | 114.5 | 150.5 | 150.5 | | 0.47 | 0.54 | 0.54 | 1.06 | 1.06 | 1.06 | 1.73 | 1.73 | | | | | | | | sal AC/ DC Flectro | | ^{*} Universal AC/ DC Electronic coil contactors | | | | (3) (3) (3) (4) | (3) (3) (3) (4) | (3) (3) (3) (4) | |--------------------------------------|---|-------|-----------------|-----------------|-----------------| | Type Designation | | Units | MDX 9 | MDX 12 | MDX 18 | | Catalogue no. | | | CS96564 | CS96565 | CS96566 | | Conformance to standard | ds | | | | | | Terminal capacity | Flexible w/olug | m | 1 - 6 | 1 - 6 | 1 - 6 | | reminarcapacity | Flexible c/wlug | mm² | 1 - 4 | 1 - 4 | 1 - 4 | | Terminal Torque (Nm) | Main pole terminal | | | 1.5. | 1.8 | | reminar rorque (min) | Aux. Pole / Coil / Add on blockTerminal | | | | | | Type of Terminal | | | | | Clamp-Screw | | | DC 1(24 V) | Α | 20 | 22 | 22 | | | DC 1(48 V) | Α | 20 | 22 | 22 | | | DC 1(110 V) | Α | 15 | 16 | 16 | | DC ratings | DC 1(220 V) | Α | 10 | 11 | 11 | | with 3 poles in series | DC 3-5 (24 V) | Α | 15 | 18 | 18 | | and DC coil operation | DC 3-5 (48 V) | Α | 15 | 18 | 18 | | | DC 3-5 (110 V) | Α | 11 | 12 | 12 | | | DC 3-5 (220 V) | Α | 5 | 6 | 6 | | | DC 1(24 V) | Α | 18 | 20 | 20 | | | DC 1(48 V) | Α | 18 | 20 | 20 | | | DC 1(110 V) | Α | 12 | 13 | 13 | | DC ratings(A) | DC 1(220 V) | Α | 8 | 8 | 8 | | with 2 poles in series | DC 3-5 (24 V) | Α | 13 | 15 | 15 | | and DC coil operation | DC 3-5 (48 V) | Α | 11 | 13 | 13 | | | DC 3-5 (110 V) | Α | 7 | 8 | 8 | | | DC 3-5 (220 V) | Α | 1.5 | 1.5 | 1.5 | | | DC 1(24 V) | Α | 15 | 17 | 17 | | | DC 1(48 V) | Α | 13 | 15 | 15 | | | DC 1(110 V) | Α | 6 | 6 | 6 | | DC ratings (A) with 1 pole in series | DC 1(220 V) | А | 4 | 4 | 4 | | and DC coil operation | DC 3-5 (24 V) | Α | 10 | 12 | 12 | | | DC 3-5 (48 V) | А | 9 | 11 | 11 | | | DC 3-5 (110 V) | Α | 2 | 2 | 2 | | | DC 3-5 (220 V) | Α | 0.75 | 0.75 | 0.75 | | | | | 10 10 | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 10 10 10 | | |---------|------------------|----------|------------------|---------|--|-----------|----------| | MDX 25 | MDX 32 | MDX 38 | MDX 50 | MDX 65 | MDX 80 | MDX 95 | MDX 115 | | CS96567 | CS96552 | CS96553 | CS91584 | CS91585 | CS91586 | CS91587* | CS91588* | | IS/IEC | 60947-4-1& IEC 6 | 0947-4-1 | | | | | | | 1 - 6 | 2. 5 - 16 | 2.5 - 16 | 4 - 50 | 4 - 50 | 6 - 50 | 6 - 50 | 6 - 50 | | 1 - 4 | 1 - 10 | 1 - 10 | 4 - 50 | 4 - 50 | 6 - 50 | 6 - 50 | 6 - 50 | | | 2.5 | 3 | | | 45 | | | | | | | 0.8 | 1 | | | | | | | | Double Lug-Clamp | | | Lug-Clamp | | | 23 | 32 | 36 | 60 | 70 | 100 | 100 | 100 | | 23 | 32 | 34 | 60 | 70 | 100 | 100 | 100 | | 18 | 27 | 34 | 55 | 60 | 85 | 85 | 85 | | 12 | 16 | 26 | 45 | 50 | 55 | 55 | 55 | | 22 | 30 | 32 | 50 | 55 | 80 | 80 | 80 | | 22 | 28 | 28 | 50 | 50 | 70 | 75 | 75 | | 15 | 20 | 23 | 30 | 35 | 60 | 60 | 60 | | 8 | 12 | 15 | 20 | 25 | 35 | 35 | 35 | | 23 | 32 | 36 | 60 | 70 | 100 | 100 | 100 | | 23 | 32 | 34 | 60 | 70 | 100 | 100 | 100 | | 16 | 25 | 32 | 50 | 60 | 80 | 80 | 80 | | 8 | 14 | 20 | 36 | 36 | 40 | 40 | 40 | | 18 | 25 | 28 | 35 | 45 | 60 | 60 | 60 | | 18 | 22 | 25 | 35 | 40 | 50 | 55 | 55 | | 10 | 15 | 18 | 25 | 30 | 40 | 40 | 40 | | 1.5 | 3 | 4 | 5 | 5 | 7 | 7 | 7 | | 20 | 30 | 35 | 45 | 50 | 70 | 70 | 70 | | 18 | 26 | 30 | 40 | 50 | 60 | 60 | 60 | | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | | 15 | 20 | 24 | 30 | 35 | 40 | 40 | 40 | | 13 | 17 | 20 | 25 | 25 | 30 | 30 | 30 | | 2 | 2.5 | 2.5 | 2.5 | 3 | 3 | 3 | 3 | | 0.75 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ## **Ordering Information** #### **DC Contactors** | Product | Îth | Ie (AC-3) at \leq 440V | Motor Rating at 50 Hz | | | Hz | Townsia al Toma | In Built
Auxiliary | 0.111.4 | |---------|--------------------|--------------------------|-----------------------|-------|-------|-------|-----------------|-----------------------|-----------| | Туре | $\leq 40^{\circ}C$ | ≤ 55°C | 230 V | 415 V | 440 V | 690 V | Terminal Type | Contacts | Cat. No.* | | | (A) | (A) | (kW) | (kW) | (kW) | (kW) | | NO/NC | | | MDX 9 | 25 | 9 | 2.2 | 4.5 | 4.8 | 7.5 | Clamp-screw | 1 NO | CS96564 | | MDX 12 | 28 | 12 | 3.2 | 6.2 | 6.2 | 10 | Clamp-screw | 1 NO | CS96565 | | MDX 18 | 32 | 18 | 4 | 9 | 9 | 10 | Clamp-screw | 1 NO | CS96566 | | MDX 25 | 32 | 25 | 7 | 13.4 | 13.4 | 11 | Clamp-screw | 1 NO | CS96567 | | MDX 32 | 56 | 32 | 8.8 | 17 | 17 | 22 | Clamp-screw | - | CS96552 | | MDX 38 | 56 | 38 | 11 | 18.5 | 18.5 | 22 | Clamp-screw | - | CS96553 | | MDX 50 | 90 | 50 | 14.3 | 27.2 | 27.2 | 43.5 | Clamp-screw | - | CS91584 | | MDX 65 | 110 | 65 | 18.5 | 36 | 36 | 59.7 | Lug-clamp | - | CS91585 | | MDX 80 | 125 | 80 | 23 | 46 | 46 | 74 | Lug-clamp | - | CS91586 | | MDX 95 | 125 | 95 | 27.6 | 55 | 55 | 74 | Lug-clamp | - | CS91587 | | MDX 115 | 125 | 115 | 33 | 66 | 70 | 80 | Lug-clamp | - | CS91588 | $[\]star$ Please add coil suffix as per required coil voltage. #### **Accessories** | Add on Blocks | | | | | | | |---------------|----------|-----|-----------------------|-------------|--|--| | For Contactor | Mounting | Ith | Contact Combinations | Cat. No. | | | | | | (A) | Contact Combinations | Gat. NO. | | | | MDX 9 - 115 | Тор | 10 | 1 NO + 1 NC | CS965680000 | | | | MDX 9 - 115 | Тор | 10 | 2 NO + 2 NC | CS965690000 | | | | MDX 9 - 115 | Side | 10 | 1 NO + 1 NC | ST949850000 | | | | MDX 9 - 115 | Тор | 10 | 1 NO /1 NC reversible | CS965860000 | | | | Mechanical Interlock kit | | | | | | |--------------------------|-------------|--|--|--|--| | For contactor | Cat. No. | | | | | | MDX 9 - 38 | CS965720000 | | | | | | MDX 50 - 115 | CS965730000 | | | | | Add on Block **Surge Suppressor** ### **Ordering Suffix for Coil Voltages** #### For MDX 9 - 38 | Coil Voltage V DC | 24 | 48 | 110 | 220 | |-------------------|------|------|------|------| | Suffix | 4000 | 5000 | 1000 | 2000 | #### * For MDX 50 - 115 | Coil Voltage AC / DC | 24 - 48 | 60 - 110 | 110 - 240 | |----------------------|---------|----------|-----------| | Suffix | J000 | A000 | B000 | ### **Mounting Position** ### **Terminal Designation** MDX 9 - 25 (with 1 NO) **MDX 32 - 38** **MDX 50 - 115** 3 Pole in series MDX 11E Top add on MDX 22E Top add on MDX 11E Side add on MDX Top add On 1 NO / 1 NC reversible (MDX 9 - 115) #### **Overall Dimensions** **MDX 9 - 25** All dimensions in mm. # ML 3 Pole Power Contactors ML Power Contactors are suitable for applications involving harsh environments. They are used in motor feeder applications in steel industries, material handling plants etc. The series includes a wide range from 25A to 300A (AC-3) and are complemented by ML Thermal Overload Relays. ## **Tap The Tough Solution** - > Conforms to IS/IEC 60947-4-1, IEC 60947-4-1 - > Range from 25A 300A AC-3 - > Rugged and designed for harsh operating conditions | | | | | 3 | |---|----------------------------------|--------|--|----------------------| | Туре | | Units | ML1.5 | ML2 | | Cat.no. | | | SS91851 | SS90701 | | Conformance Standards | | | | | | No.ofpoles | | | 3 | 3 | | Thermal rating / Utilization category AC-1:3 | Ø, 415V, 50 Hz | Α | 25 | 40 | | Uivoltage, Insulation | | V | 500 | 500 | | | Utilization Category AC-2 | Α | 25 | 32 | | Motor duty 3Ø, 415V, 50 Hz | Utilization Category AC-3 | kW/A | 11 / 25 | 15 / 32 | | | Utilization Category AC-4 | kW/A | 9 / 21 | 15 / 32 | | Operational Current le (AC-4 Utilization Categories For contact life of 300000 Operating cycles | ory) | Α | 13.5 | 17
 | I) Ctator duty 41EV EOUT | 20% | Α | 37 | 48 | | I) Stator duty - 415V, 50Hz | 40% | Α | 37 | 48 | | Duty factor (10 min. cycle duration) | 60% | Α | 30 | 40 | | II) Datar duty Dalta connected | 20% | Α | 56 | 72 | | II) Rotor duty - Delta connected | 40% | Α | 56 | 72 | | Duty factor (10 min. cycle duration) | 60% | Α | 44 | 60 | | III) Adam Data Afalkana | Starting | V | 830 | 830 | | III) Max.RotorVoltage
(10min.cycleduration) | Plugging | V | 415 | 415 | | (Tottiin.cycleddration) | Speed control | V | 500 | 500 | | Making Capacity at 457V, Cos Ø - 0.35, 50 Hz | | Α | 252 | 400 | | Breaking Capacity at 457V, Cos Ø - 0.35, 50 Hz | Z | Α | 210 | 320 | | | DC1 - 110V | Α | 25 | 32 | | | DC1 - 220V | Α | 25 | 32 | | DC rating (with 3 poles in series) and | DC3 - 110V | Α | 25 | 32 | | AC coiloperation | DC3 - 220V | Α | 10 | 32 | | 710 odnoperation | DC5 - 110V | Α | 25 | 32 | | | DC5 -220V | A | 7.5 | 32 | | Mechanical life : No of operating cycles | 200 2201 | mm | 15 x 10° | 10 x 10 ⁶ | | Wednamed life . No or operating dyoles | Mechanical | cy/hr | 3000 | 2000 | | | Utilization Category AC-1 | cy/hr | 3000 | 750 | | Max. Frequency of operation : | Utilization Category AC-2 | cy/hr | 750 | 750 | | Operating | Utilization Category AC-3 | cy/hr | 750 | 750 | | | Utilization Category AC-4 | cy/hr | 250 | 250 | | Service temperature | otilization outegory 70 4 | °C | -20°C to +55°C | -20°C to +55°C | | · | Wires | mm | 2 x 10 | 2 x 25 | | Main terminal capacity | Lugs | mm | 16 | 50 | | Auxiliary Contacts | Lugs | 111111 | 10 | 30 | | No. of built in auxiliary contacts | | | 2 NO + 2 NC | 2 NO + 2 NC | | Operating Sequence | | | ZINO+ZING | ZNOTZNO | | Thermal Rating at 415V, 50 Hz | | | 16 | 16 | | | | mm² | 2 x 2.5 | 2 x 2.5 | | Aux. Terminal Capacity : Wires | | | 2 x 2.5
4 | | | AC-15 Rating at 415V, 50Hz | A | | 4 | | | Making Capacity at 415V, Cos Ø - 0.35, 50 Hz | A | 80 | 80 | | | Breaking Capacity at 415V, Cos Ø - 0.35 Ø, 50 | HZ | Α | 70 | 70 | | Coil | | | 04 40 110 000 040 | 40 110 | | Voltages Available for 50Hz operation, Uc | | V | 24, 42, 110,220,240,
360, 380,415,440,525 | 42, 110
60, 380 | | Pick-up | VA | VA | 60 | 120 | | i lok up | Cos Ø | | 0.8 | 0.4 | | | VA | VA | 15 | 20 | | Hold-on | Watts | W | 5 | 8.5 | | | Pick-up (% Uc) | %Uc | 75 - 110 | 75 - 110 | | Limits of operation | Fick-up (% 0c) | | | | | Limits of operation | Drop-off (% Uc) | %Uc | 65 - 15 | 65 - 15 | | Limits of operation Typical closing delay | . , | | 65 - 15
5 - 35 | 65 - 15
10 - 35 | | · | . , | %Uc | | | | | (Mari | No. | | |----------------|----------------------------|----------------------|----------------------| | ML 3 | ML 4 | ML 6 | ML 12 | | SS90721 | SS90910 | SS90921 | SS91010 | | | C 60947-4-1, IEC 60947-4-1 | | | | 3 | 3 | 3 | 3 | | 45 | 100 | 125 | 400 | | 500 | 660 | 660 | 660 | | 40 | 70 | 110 | 300 | | 22 / 40 | 37 / 70 | 55 / 110 | 165 / 300 | | 22 / 40 | 37 / 70 | 45 / 85 | 140 / 250 | | 22 / 40 | 31 / 10 | 40 / 00 | 140 / 200 | | 22 | 35 | 46 | 112 | | 60 | 95 | 165 | 375 | | 60 | 95 | 165 | 375 | | 50 | 78 | 135 | 310 | | 90 | 157 | 270 | 560 | | 90 | 157 | 270 | 560 | | 75 | 118 | 206 | 465 | | 830 | 830 | 830 | 830 | | 415 | 415 | 415 | 415 | | 500 | 500 | 500 | 500 | | 480 | 840 | 1200 | 3000 | | 400 | 700 | 1000 | 2500 | | 40 | 63 | 85 | 300 | | 40 | 63 | 85 | 300 | | 40 | 63 | 85 | 300 | | 40 | 63 | 63 | 300 | | 40 | 63 | 85 | 300 | | 40 | 63 | 63 | 300 | | 10 x 10° | 10 x 10 ⁶ | 10 x 10 ⁶ | 10 x 10 ⁶ | | 2000 | 1200 | 1200 | 1200 | | 750 | 1000 | 750 | 750 | | 750 | 500 | 500 | 500 | | 750 | 750 | 750 | 500 | | 250 | 250 | 250 | 250 | | -20°C to +55°C | -20°C to +55°C | -20°C to +55°C | -20°C to +55°C | | | -20 C to +33 C | -20 C to +35 C | -20 C to +35 C | | 2 x 25 | 50 | | | | 50 | 50 | 95 | 240 | | 2 NO + 2 NC | | | Break Before Make | | | | 16 | 16 | 16 | 16 | | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | | 4 | 4 | 4 | 4 A | | 80 | 80 | 80 | 80 | | 70 | 70 | 70 | 70 | | | | | | | 220,240 | | ,220 | 110,220,240 | | 415,440,525 | | 15,525 | 380,415,525 | | 120 | 450 | 450 | 1450 | | 0.4 | 0.3 | 0.3 | 0.25 | | 20 | 50 | 50 | 85 | | 8.5 | 17 | 17 | 27 | | 75 - 110 | 75 - 110 | 75 - 110 | 75 - 110 | | 65 - 15 | 65 - 15 | 65 - 15 | 65 - 15 | | 10 - 35 | 10 - 35 | 10 - 35 | 15 - 45 | | 5 - 25 | 10 - 40 | 10 - 40 | 5 - 25 | | 0.95 | 2.9 | 3 | 9.2 | ### **MI Thermal Overload Relay** | Туре | | Units | ML 1.5 | ML 2/3 | |--|-----------------|-----------------|-----------------|-----------------| | Cat. no. | | | SS91858 | SS91859 | | Conformance Standards | | | IS/IEC 60947-4- | 1,IEC 60947-4-1 | | Rated insulation voltage (Ui) | | V | 500 | 500 | | Rated impluse strength (Uimp) | | ٧ | 6 | 6 | | Service temperature | | °C | -5°C to +55°C | -5°C to +55°C | | Rated thermal current Ith at 415V, 50 Hz | | А | 6 | 6 | | | 24V | Α | 6 | 6 | | | 110V | A 5 | | 5 | | Rated operational current for AC-15 utilizationcategory at 50 Hz | 220V | Α | 3 | 3 | | | 380 / 415V | Α | 2 | 2 | | | 500V | Α | 2 | 2 | | | | | 1 Start | 1 Start | | Built in contacts | | | 1 Off / Reset | 1 Off / Reset | | | | | 1 Alarm (NO) | 1 Alarm (NO) | | Tripping class | | Α | 10 | 10 | | Max. Frequency of operation | Op. cycles / hr | cy / hr | 30 | 30 | | Main Terminal capacity | Lug | mm ² | 16 | 50 | | Aux. Terminal capacity Wires | | mm² | 2 x 2.5 | 2 x 2.5 | ### **I-T Characteristics** ### **3 Pole Balanced Loading Condition** ### **ML 1 (upto 6-10 Amps)** ### **ML 1 (upto 10-16 Amps)** ### **Ordering Information** ### **ML Relays** | Туре | Range (A) | Cat. No. | |----------|-------------|-------------| | | 0.15 - 0.25 | SS9185800D0 | | | 0.25 - 0.4 | SS9185800F0 | | | 0.4 - 0.65 | SS9185800H0 | | ML 0 | 0.6 - 1 | SS9185800K0 | | ML 1 | 1 - 1.6 | SS9185800M0 | | ML 1.5 | 1.5 - 2.5 | SS9185800P0 | | IVIE 1.3 | 2.5 - 4 | SS9185800R0 | | | 4 - 6.5 | SS9185800TO | | | 6 - 10 | SS9185800V0 | | | 10 - 16 | SS9185800B0 | | | 9 - 14 | SS9185900A0 | | ML 2 | 13 - 21 | SS9185900C0 | | ML 3 | 20 - 32 | SS9185900E0 | | | 28 - 42 | SS9185900F0 | ### **Accessories & Spares** | Contactor Type | Aux. Add on Block | Spare Coil* | Spare Kit | Housing & Bridge Kit | |----------------|-------------------|-------------|-----------|----------------------| | ML 1.5 | Not available | SS90873 | SS95305 | ST28734 | | ML 2 | Not available | SS90545 | SS95307 | ST23866 | | ML 3 | Not available | 3390343 | SS95309 | 3123000 | | ML 4 | SS91494 | SS91258 | SS95311 | ST28735 | | ML 6 | 3351454 | 5591258 | SS95313 | 3120133 | | ML10 | SS91474 | SS91011 | SS95315 | - | | ML 12 | 3391414 | 3391011 | SS95317 | - | ^{*} Add 4 digit suffix as per required coil voltage given below. ### **Ordering Suffix for Coil Voltages** | Std Coil voltage at 50Hz | 24 | 42 | 48 | 110 | 220 | 240 | 360 | 380 | 415 | 440 | 525 | |--------------------------|------|------|------|------|------|------|------|------|------|------|------| | Ordering Suffix | G000 | J000 | H000 | A000 | K000 | B000 | C000 | L000 | D000 | P000 | M000 | #### **ML 1.5 Contactor (Without shroud)** #### **ML 4 Contactor** *Provide 12 mm extra for each Add-on block #### ML 2 / 3 Contactor **ML 6 Contactor** **ML 12 Contactor** #### **Thermal Overload Relay** ## **MX Mini Contactors & Thermal Overload Relay** MX Mini Contactors are designed for panels where panel space is a constraint. The contactors have a compact design and exhibit reliable performance even in smaller space. The range is suitable for both industrial and commercial applications for motor loads up to 5.5 kW and electromagnetic loads up to 4A. ## **Make Way For Bigger Benefits In Smaller Footprints** ### **Technical Details -MX power Contactors** - Range from 6A 12A AC3 - > Control contactors available in all NO/NC combinations (4 Pole) - > Top mounting accessories - > Available with AC or DC control - > Built-in surge suppressor with DC control - > Direct mounting thermal overload relay type RX - > RoHS Compliant | Type Designation for AC / DC Control Units MX 6 AC / DC MX 9 AC / DC MX 12 AC / DC Catalogueno, for AC control CS94012 / 3 CS94014 / 5 CS94016 / 7 CS9402 / 2 CS94023 / 4 CS94025 / 6 | | | | Jane 1 | Land & C. | |
--|---------------------------------|----------------------------|-----------------|--------------|---------------------|---------------| | Catalogueno. for DC control C894021/2 C894023/4 C894025/6 Conformance to standards IRJEC 60947-4-1, IRC 60947-4-1, IRC 60947-4-1 C8947-4-1, IRC 60947-4-1, IRC 60947-4-1 C8947-4-1, IRC 60947-4-1, IRC 60947-4-1, IRC 60947-4-1 C8947-4-1, IRC 60947-4-1, IRC 60947-4-1, IRC 60947-4-1 C8947-4-1, IRC 60947-4-1, IRC 60947-4-1, IRC 60947-4-1, IRC 60947-4-1, IRC 60947-4-1 C8947-4-1, IRC 60947-4-1, | Type Designation for AC / DC | Control | Units | MX 6 AC / DC | MX 9 AC / DC | MX 12 AC / DC | | Sriec 60947-4-1,IEC 60947-4-1, IEC IE | Catalogueno. for AC control | | | CS94012 /3 | CS94014 / 5 | CS94016 / 7 | | Rated insulation voltage, U. V 690 | Catalogueno. for DC control | | | CS94021 / 2 | CS94023 / 4 | CS94025 / 6 | | Service temperature | Conformance to standards | | | IS/IEC 60947 | -4-1,IEC 60947-4-1, | EN 60947-4-1 | | Degree of protection | Rated insulation voltage, Ui | | V | | 690 | | | Tightening torque | Service temperature | | °C | | -5°C to +55°C | | | No. of main poles | Degree of protection | | | | IP20 | | | No. of mainpoles 3 20 20 20 20 20 20 20 | Tightening torque | | Nm | | 0.8 | | | Conventional thermal current, Im A 20 Rated currentat 415 V, 50 Hz Utilization category AC-1 A 20 Making capacity at 415 V, 50 Hz A 10 In (AC - 3) Breaking capacity at 415 V, 50 Hz A 8 In (AC - 3) Breaking capacity at 415 V, 50 Hz A 8 In (AC - 3) Short-circuit protection gG fuse at 415 V, 50 Hz A 20 Electrical durability (AC-3) million 1 0.8 0.6 Frequency of operational Use Utilization category AC-1 Utilization category AC-3 cy / hr 3000 3000 Pollution degree 3 3 3000 | Power Contacts | | | | | | | Rated currentat 415 V, 50 Hz | No. of mainpoles | | | | 3 | | | Rated currentat 415 V, 50 Hz Utilization category AC-3 A / kW 6/3 9/4 12/5.5 Making capacity at 415 V, 50 Hz A 10 Ie (AC - 3) Breaking capacity at 415 V, 50 Hz A 8 Ie (AC - 3) Short-circuit protection gG fuse at 415 V, 50 Hz A 20 Electrical durability (AC-3) million 1 0.8 0.6 Frequency of operationat Uc Utilization category AC-1 cy / hr 3000 750 Pollution degree 3 3 3 3 Pollution degree 3 3 3 3 Pollution degree 3 4 4 3 3 4 3 | Conventional thermal current | , I _{th} | А | | 20 | | | Utilization category AC-3 | Dated surrented 43534 5011 | Utilization category AC-1 | Α | | 20 | | | Breaking capacity at 415 V, 50 Hz | Rated currentat 415 V, 50 HZ | Utilization category AC-3 | A / kW | 6/3 | 9 / 4 | 12 / 5.5 | | Short-circuit protection gG fuse at 415 V, 50 Hz A 20 Electrical durability (AC-3) million 1 0.8 0.6 Frequency of operationat U _c Utilization category AC-1 cy / hr 3000 Pollution degree 3 3 Main terminal capacity Multi-stranded conductors mm² 2 x 2.5 Auxiliary Contacts No. of built-in auxiliary contact 1 NO or 1 NC Conventional thermalcurrent, I _{Im} A 10 Rated currentat 415 V, 50 Hz Utilization category AC-15 A 4 10 Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at U _c (AC-15) cy / hr 1000 Auxiliary terminal capacity Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for death of the death of the control cable length for death of the death of the control cable length for category AC-1 and the cy / hr and the category AC-15 a | Making capacity at 415 V, 50 | Hz | А | | 10 le (AC - 3) | | | Electrical durability (AC-3) | Breaking capacity at 415 V, 50 |) Hz | А | | 8 le (AC - 3) | | | Frequency of operationat Uc Utilization category AC-1 Utilization category AC-3 cy / hr 750 Pollution degree Solid conductors Main terminal capacity Multi-stranded conductors Multi-stranded conductors No. of built-in auxiliary contact Conventional thermal current, Inh Rated currentat 415 V, 50 Hz Short-circuit protection gG fuse at 415 V, 50 Hz Minimum non-overlapping distance Maximum frequency of operation at Uc (AC-15) Auxiliary terminal capacity Maximum Permissible control cable length for Utilization category AC-1 A | Short-circuit protection | gG fuse at 415 V, 50 Hz | Α | | 20 | | | Frequency of operation at Uo Utilization category AC-3 cy / hr 750 Pollution degree 3 Main terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Auxiliary Contacts No. of built-in auxiliary contact 1 NO or 1 NC Conventional thermal current, Inh A 10 Rated currentat 415 V, 50 Hz Utilization category AC-15 A 4 Short-circuit protection gG fuse at 415 V, 50 Hz A 10 Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at Uo (AC-15) cy / hr 1000 Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Maximum Permissible control cable length for 240 V AC m 207.21 | Electrical durability(AC-3) | | million | 1 | 0.8 | 0.6 | | Pollution degree Main terminal capacity Solid conductors Multi-stranded conductors Multi-stranded conductors Multi-stranded conductors Multi-stranded conductors Multi-stranded conductors No. of built-in auxiliary contact 1 NO or 1 NC Conventionalthermalcurrent, lth A 10 Rated currentat 415 V, 50 Hz Short-circuit protection GG fuse at 415 V, 50 Hz A 10 Electrical durability (AC-15) at 415 V, 50 Hz Minimum non-overlapping distance Maximum frequency of operation at Uc (AC-15) Auxiliary terminal capacity Multi-stranded conductors Maximum Permissible Control cable length for Auxiliary office Solid conductors Maximum Permissible Control cable length for Auxiliary office Solid conductors Maximum Permissible Control cable length for Auxiliary office Solid conductors Maximum Permissible Control cable length for Auxiliary office Solid conductors Multi-stranded | F | Utilization category AC-1 | cy / hr | | 3000 | | | Main terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Auxiliary Contacts No. of built-in auxiliary contact 1 NO or 1 NC Conventionalthermalcurrent, Inh A 10 Rated currentat 415 V, 50 Hz Utilization category AC-15 A 4 Short-circuit protection gG fuse at 415 V, 50 Hz A 10 Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at Uc (AC-15) cy / hr 1000 Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible 415 V AC m 69.30 control cable length for 240 V AC m 207.21 | Frequency of operationat Uo | Utilization category AC-3 | cy / hr | | 750 | | | Multi-stranded conductors mm² 2 x 2.5 Auxiliary Contacts No. of built-in auxiliary contact 1 NO or 1 NC Conventionalthermalcurrent, Inh A 10 Rated currentat 415 V, 50 Hz Utilization category AC-15 A 4 Short-circuit protection gG fuse at 415 V, 50 Hz A 10 Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at U _c (AC-15) cy / hr 1000 Auxiliary terminal capacity | Pollution degree | | | | 3 | | | Multi-stranded conductors mm² 2 x 2.5 Auxiliary Contacts 1 NO or 1 NC No. of built-in auxiliary contact 1 NO or 1 NC Conventionalthermalcurrent, Ith A 10 Rated currentat 415 V, 50 Hz Utilization category AC-15 A 4 Short-circuit protection gG fuse at 415 V, 50 Hz A 10 Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at Uc (AC-15) cy / hr 1000 Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for decorated decorate | Main tarminal consoits | Solid
conductors | mm ² | | 2 x 2.5 | | | No. of built-in auxiliary contact Conventionalthermalcurrent, leth A 10 Rated currentat 415 V, 50 Hz Utilization category AC-15 A 4 Short-circuit protection gG fuse at 415 V, 50 Hz Electrical durability (AC-15) at 415 V, 50 Hz Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at Uo (AC-15) Auxiliary terminal capacity Maximum Permissible control cable length for drop off* | Main terminal capacity | Multi-stranded conductors | mm² | | 2 x 2.5 | | | Conventionalthermalcurrent, lth A 10 Rated currentat 415 V, 50 Hz Utilization category AC-15 A 4 Short-circuit protection gG fuse at 415 V, 50 Hz A 10 Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at U _c (AC-15) cy / hr 1000 Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Maximum Permissible onductors mm² 2 x 2.5 Maximum Permissible control cable length for drop off* | Auxiliary Contacts | | | | | | | Rated currentat 415 V, 50 Hz Utilization category AC-15 A 4 Short-circuit protection gG fuse at 415 V, 50 Hz A 10 Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at Uc (AC-15) cy / hr 1000 Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for drop offs. | No. of built-in auxiliary conta | ct | | | 1 NO or 1 NC | | | Short-circuit protection gG fuse at 415 V, 50 Hz A 10 Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at Uc (AC-15) cy / hr 1000 Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for drop offs | Conventionalthermalcurrent, lt | h | А | | 10 | | | Electrical durability (AC-15) at 415 V, 50 Hz million 1.5 Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at U _c (AC-15) cy / hr 1000 Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for 240 V AC m 207.21 | Rated currentat 415 V, 50 Hz | Utilization category AC-15 | А | | 4 | | | Minimum non-overlapping distance mm 0.5 Maximum frequency of operation at Uc (AC-15) cy / hr 1000 Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for drop offs | Short-circuit protection | gG fuse at 415 V, 50 Hz | А | | 10 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Electrical durability (AC-15) a | t 415 V, 50 Hz | million | | 1.5 | | | Auxiliary terminal capacity Solid conductors mm² 2 x 2.5 Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for 240 V AC m 207.21 | Minimum non-overlapping di | stance | mm | | 0.5 | | | Auxiliary terminal capacity Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for drop, off* drop, off* | Maximum frequency of opera | tion at Uc (AC-15) | cy / hr | | 1000 | | | Multi-stranded conductors mm² 2 x 2.5 Maximum Permissible control cable length for drop off* drop off* | Auxiliary tarminal associt | Solid conductors | mm ² | | 2 x 2.5 | | | control cable length for 240 V AC m 207.21 | Auxiliary terminal capacity | Multi-stranded conductors | mm ² | | 2 x 2.5 | | | control cable length for 240 V AC m 207.21 | Maximum Permissible | 415 V AC | m | | 69.30 | | | drop-off* 110 V AC m 986.37 | | 240 V AC | m | | 207.21 | | | | drop-off* | 110 V AC | m | | 986.37 | | CS94012 / 14 / 16 / 21 / 23 / 25 are 3 Main + 1NO auxiliary contact combination CS94013 / 15 / 17 / 22 / 24 / 26 are 3 Main + 1NC auxiliary contact combination *Cable capacitance assumed to be 0.2 microfarad/km ### **Technical Details -MX0** power Contactors #### **Technical Data** | | | | 14 NO 22 NO 32 NO 44 | THO AZ | 14 NO 22 NO 32 NO 44 NO A2 | 14 160 | 2 NC 32 NC 44 NO A2 | | |------------------------------------|--------------------------------|---------|--------------------------------|-----------------|----------------------------|-------------|---------------------|--| | Type Designation for AC / DC | Control | Units | | N | /IX 0 AC / D | С | | | | Catalogueno. for AC control | | | CS94018 | CS94019 | CS94020 | CS94041 | CS94042 | | | Catalogueno. for DC control | | | CS94027 | CS94028 | CS94029 | CS94043 | CS94044 | | | Contact combination | | | 40E | 31E | 22E | 13E | 04E | | | Conformance to standards | | | IS/IEC | 60947-5-1, | IEC 60947- | 5-1, EN 609 | 47-5-1 | | | Rated insulation voltage, Ui | | V | | | 690 | | | | | Service temperature | | °C | | - | -5°C to +55° | C | | | | Degree of protection | | | | | IP20 | | | | | Tightening torque | | Nm | | | 0.8 | | | | | Contacts | | | | | | | | | | No. of poles | | | | | 4 | | | | | Contact details | | | 4NO | 3NO+1NC | 2NO+2NC | 1NO+3NC | 4NC | | | Conventional thermal current, | , I _{th} | Α | | | 10 | | | | | Rated currentat 415 V, 50 Hz | Utilisation category AC-15 | Α | | | 4 | | | | | Short-circuit protection | gG fuse at 415 V, 50 Hz | Α | | | 10 | | | | | Electrical durability (AC-15) a | t 415 V, 50 Hz | million | | | 1.5 | | | | | Minimum non-overlapping dis | mm | 0.5 | | | | | | | | Maximum frequency of opera | cy / hr | | | 1000 | | | | | | Terminal capacity | Solid conductors | mm² | | | 2 x 2.5 | | | | | Terrillial capacity | Multi-stranded conductors | mm² | | | 2 x 2.5 | | | | | Control Circuit for Power Cor | ntactor & Contactor Relay | | | | | | | | | Coil voltage | | | AC DC | | | | | | | Standard coil voltage Uc, at 50 |) Hz | V | 24, 110, 240, 415 24, 110, 220 | | | | 220 | | | Average consumption | Pick-up | VA | | 26 | | 2.8 | | | | at U _c , 50 Hz | Hold-on | VA | | 4.5 | | 2.8 | | | | | Tiola on | W | | 1.2 | | 2.8 | | | | Limitsof operation | Pick-up | % U₀ | 8 | 30 - 110 | | 80 - 11 | 0 | | | | Drop-off | % Uc | | 20 - 65 | | 10 - 6 | 5 | | | | Between coil energisation and: | | | | | | | | | | - Opening of NC contacts | ms | | 5 - 20 | | 5 - 25 | | | | Operating time at U₀, 50 Hz | - Closing of NO contacts | ms | | 10 - 25 | | 10 - 30 |) | | | and: | | | | | | | | | | | - Opening of NO contacts | ms | | 10 - 25 | | 10 - 30 | | | | | - Closing of NC contacts | ms | | 15 - 30 15 - 35 | | | 5 | | | Mechanical durability | | million | | 10 | | 10 | | | | Maximum frequency of opera | | cy / hr | | 9000 | | 9000 | | | | Maximum Permissible | 415 V AC | m | | | 69.30 | | | | | control cable length for drop-off* | 240 V AC | m | | | 207.21 | | | | | αιορ-στι _* | 110 V AC | m | 986.37 | | | | | | ^{1) 5}NC and above combinations not recommended for DC control ^{2) 1}NO + 3NC, 4NC add on block combinations are not recommended for DC control For example, 4NO + 4NC combination can be achieved with 2NO + 2NC auxiliary contactor and 2NO + 2NC add on block and not with 4NO standalone contactor plus 4NC add on block 3) *Cable capacitance assumed to be 0.2 microfarad/km ### **Accessories Features** ### **Auxiliary Contact Blocks** | | | | | | | | - | | | | |------------------------------|--|-----------------|---------|---|---------|---------|----------|---------|---------|---------| | Type Desi | gnation | Units | | | | 1 | VIX-A1 | | | | | Catalogue | no. | | CS94030 | CS94031 | CS94032 | CS94033 | CS94034 | CS94035 | CS94036 | CS94037 | | Contact co | ombination | | 20E | 11E | 02E | 40E | 31E | 22E | 13E | 04E | | Conforma | nce to standards | | | IS/IEC 60947-5-1, IEC 60947-5-1, EN 60947-5-1 | | | | | | | | Rated insu | ulationvoltage, Ui | V | | | | (| 590 | | | | | Service te | mperature | °C | | | | -5°C | to +55°C | | | | | Degree of | protection | | | | | I | P20 | | | | | Tightening | g torque | Nm | | | | | 0.8 | | | | | Contacts | | | | | | | | | | | | No. of pole | es | | | 2 | | | | 4 | | | | Contact de | etails | | 2NO | 1NO+1NC | 2NC | 4NO | 3NO+1NC | 2NO+2NC | 1NO+3NC | 4NC | | Conventio | nal thermal current, Ith | Α | | 10 | | | | | | | | | rent at 415 V, 50 Hz
category AC-15 | А | | 3 | | | | | | | | | uit protectiong
115 V, 50 Hz | Α | | | | | 10 | | | | | Electrical d | urability(AC-15)at 415V, 50Hz | million | | | | | 1 | | | | | Minimum overlapping distance | | | | | | | 0.5 | | | | | Maximum
at U₀ for (A | Maximum frequency of operation at U₀ for (AC-15) | | | 1000 | | | | | | | | Terminal | Solid conductors | mm² | | | | 2 | x 2.5 | | | | | capacity | Multi-stranded conductors | mm ² | | | | 2 | x 2.5 | | | | | | | | | | | | | | | | #### **Mechanical Interlock** | Type Designation | MX-M1 | |------------------|-------------| | Catalogue no. | CS940380000 | #### **Surge Suppressor** | Type Designation | MX-S1 | | | | | | |--------------------------------|-----------|-------------|-------------|--|--|--| | Catalogue no. | CS94039 | | | | | | | Suitable Coil Voltage at 50 Hz | 24 - 48 V | 110 - 240 V | 360 - 415 V | | | | | Ordering Suffix | J000 | B000 | D000 | | | | ### **Ordering Suffix for Coil Voltages** | Std Coil Voltage at 50 Hz | 24 | 42 | 48 | 110 | 220 | 240 | 360 | 380 | 415 | 440 | 525 | |---------------------------|------|------|------|------|------|------|------|------|------|------|------| | Ordering Suffix - 50 Hz | G000 | H000 | J000 | A000 | K000 | B000 | C000 | L000 | D000 | P000 | M000 | | Ordering Suffix - 60 Hz | - | - | - | Y000 | V000 | - | - | - | S000 | - | - | | Coil Voltage V DC | 24 | 48 | 110 | 220 | |-------------------|------|------|------|------| | Suffix | 4000 | 5000 | 1000 | 2000 | ### **Thermal Overload Relay -Type RX** #### **Technical Data** | Type Designation | | | RX | | | | |---|-------------|-----------------|-----------------|------------------|--|--| | Catalogue no. | | | ST94074 | | | | |
Conformance to standards | | | IS/IEC 60947-4- | 1& IEC 60947-4-1 | | | | | | | Range (A) | Ordering Suffix | | | | | | Α | 0.23-0.41 | OOFO | | | | | | Α | 0.45-0.78 | 00J0 | | | | | | Α | 0.78-1.2 | 00L0 | | | | | | Α | 1.2-1.9 | OONO | | | | Current range | | Α | 1.8-2.8 | 00P0 | | | | | | Α | 2.6-3.6 | 0000 | | | | | | Α | 3.6-5.2 | 0080 | | | | | | Α | 4.8-7 | 00T0 | | | | | | Α | 6.4-9.7 | 00V0 | | | | | | Α | 8.2-12.1 | 00A0 | | | | Rated insulationvoltage, Ui | | V | 6 | 90 | | | | Rated impulse voltage, U _{imp} | | kV | 6 | | | | | Service temperature | | °C | -5°C to +55°C | | | | | Contacts | | | | | | | | | 24 V | Α | 6 | | | | | Detect on anti-material Control of | 110 V | Α | | 5 | | | | Rated operational current for AC-15 utilisation category at 50 Hz for | 220 V | Α | | 3 | | | | 3 , | 380 / 415 V | Α | | 2 | | | | | 500 V | Α | | 2 | | | | Tripping class | | Α | 1 | 0 | | | | Maximum frequency of operation | | cy / hr | 3 | 30 | | | | Main terminal capacity (Lug) | | | | 0 | | | | Auxiliary terminal capacity (Wires) | | mm ² | 2 x | 2.5 | | | | Mounting | | mm ² | Direct | | | | | OFF / Reset | | | 1 OFF a | nd Reset | | | | Built-incontacts | | | 1NO and 1NC | | | | ### **IT - Characteristics** #### **Technical Data** #### **Relay Selection Chart** | Range (A) | Back-up fuse (HF) (A) | Contactor | |-------------|-----------------------|-----------| | 0.23 - 0.41 | 2 | MX 6 | | 0.45 - 0.78 | 2 | MX 6 | | 0.78 - 1.2 | 2 | MX 6 | | 1.2 - 1.9 | 2 | MX 6 | | 1.8 - 2.8 | 4 | MX 6 | | 2.6 - 3.6 | 4 | MX 6 | | 3.6 - 5.2 | 6 | MX 6 | | 4.8 - 7 | 8 | MX 9 | | 6.4 - 9.7 | 10 | MX 12 | | 8.2 - 12.1 | 16 | MX 12 | #### **Contact Travel Diagram** ### **Dimension with Relay** #### **Dimension with MIL Kit** All dimensions in mm. ## MCX 4 Pole Power Contactors MCX range of 4 pole contactors is available from 16A to 800A AC-1. The contactors are widely used in conjunction with auto source transfer controller for transfer of power from mains to backup supply. # **The Pathway to Smoother Changeovers** ### **MCX Four Pole Contactors** #### **4 Pole Contactors in DG Set** ^{*}Both the contactors are electrically & mechanically interlocked ^{*}Auxiliary NC contact will be used for actuation and NO for indication ### **MCX Four Pole Contactors** 4 pole contactors used for DG set changeover applications are generally located upstream Even if motor loads are connected down stream, the upstream 4 pole contactor will not be making the starting current of the motor This starting current will have to be made by the downstream AC3 rated 3 pole contactor which will actually switch on he motor Hence, 4 Pole contactors must always be selected as per their AC1 rating - Range from 18-900A AC1 - > Wide operating band upto 100A AC1 - > Compact mechanical interlock arrangement upto 80A | Туре | | Unit | MCX 01 | MCX 02 | MCX 03 | MCX 04 | |-------------------------|---|-----------------|------------|----------------------|-------------------|------------| | Catalogue no. | | | CS97009 | CS97010 | CS97011 | CS97012 | | Conformance to stan | dards | | | | | | | Preferred DG ratings | | kVA | 7.5 | 15 | 20 | 25 | | Power contacts | | | | | | | | No. of poles | | | 4 | 4 | 4 | 4 | | Number of built-inaux | xiliary contacts | | - | - | - | - | | Rated insulationvolta | ige , Ui | V | 690 | 690 | 690 | 690 | | Rated operational vol | tage, Ue | V | 415 | 415 | 415 | 415 | | Rated impulse withst | andvoltage, U _{imp} | kV | 8 | 8 | 8 | 8 | | Conventional therma | l current, I _{th} / AC1 at 55°C / 60°C | Α | 18 | 25 | 32 | 40 | | | 1 Second | Α | 250 | 250 | 320 | 400 | | | 10 Seconds | Α | 105 | 105 | 134 | 168 | | Permissible short | 15 Seconds | Α | 70 | 70 | 90 | 112 | | timeratings | 1 Minute | Α | 60 | 60 | 77 | 96 | | | 10 Minutes | Α | 30 | 30 | 38 | 48 | | | 15 Minutes | Α | 25 | 26 | 34 | 42 | | Vibration resistance of | conformingto IEC 60068-2-6 | | | | | | | Ambient temperature | Service temperature | °C | | | | | | around the device | Storage temperature | °C | | | | | | Altitude withoutderat | ion | m | | | | | | Degree of Pollution | | | | | | | | Degree of protection | | | | | | | | Protective treatment | | | | | | | | Watt loss per pole | | W | 1 | 1.1 | 2 | 3.1 | | Type of Terminal | Type of Terminal | | | Philip and Slot Head | Combination Screw | | | | Cable withLug | mm ² | 1 x 6 | 1 x 6 | 1 x 6 | 1 x 6 | | Maximum Main | Busbar (withspreader) | mm ² | - | - | - | - | | terminal capacity | Solid conductor | | 2 x 4 | 2 x 4 | 2 x 4 | 2 x 4 | | | Multistrand conductors | mm ² | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | 2 x 2.5 | | Tightening | Main Pole Terminal | Nm | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | | Torque | Aux. Pole / Coil / Add on block Terminal | Nm | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | | | | | | | | | | MCX 11 | MCX 12 | MCX 13 | MCX 22 | MCX 23 | | | | |------------|----------------------------------|-----------------|----------------|----------------|--|--|--| | CS97013 | CS97014 | CS97015 CS97017 | | CS97018 | | | | | | IS/IEC 60947-4-1 & IEC 60947-4-1 | | | | | | | | 30 | 40 | 50 | 62.5 | 82.5 | | | | | | | | | | | | | | 4 | 4 | 4 | 4 | 4 | | | | | - | - | - | - | - | | | | | 690 | 690 | 690 | 690 | 690 | | | | | 415 | 415 | 415 | 415 | 415 | | | | | 8 | 8 | 8 | 8 | 8 | | | | | 55 | 63 | 80 | 105 | 130 | | | | | 400 | 504 | 640 | 1000 | 1300 | | | | | 240 | 302 | 384 | 650 | 845 | | | | | 120 | 151 | 192 | 370 | 481 | | | | | 110 | 139 | 176 | 250 | 325 | | | | | 63 | 72 | 90 | 120 | 156 | | | | | 58 | 67 | 85 | 110 | 143 | | | | | 5 30 | 0 Hz : 3g | | | | | | | | -20°C | to 60°C | | | | | | | | -40°C | to 80°C | | -15°C | to 80°C | | | | | 30 | 000 | | | | | | | | | 3 | | | | | | | | IP | 20 | | | | | | | | Т | TH . | | | | | | | | 4.8 | 6.6 | 7 | 7.3 | 7.8 | | | | | | | Slot Head Screw | | | | | | | 1 x 16 | 1 x 16 | 1 x 16 | 1 x 35 | 1 x 50 | | | | | - | - | - | 1 x (12.5 x 3) | 1 x (12.5 x 3) | | | | | 2 x 10 | 2 x 10 | 2 x 10 | - | - | | | | | 2 x 6 | 2 x 6 | 2 x 6 | - | - | | | | | M5 / 2.4 | M5 / 2.4 | M5 / 2.4 | M6 / 4.5 | M6 / 4.5 | | | | | M3.5 / 1.1 | | | | - Range from 18-900A AC1 - Wide operating band upto 100A AC1 - > Compact mechanical interlock arrangement upto 80A | Туре | | Unit | MCX 01 | MCX 02 | MCX 03 | MCX 04 | |------------------------------|---------------------------------|-----------------|---------------------|---------------------|---------------------|---------------------| | Catalogue no. | | | CS97009 | CS97010 | CS97011 | CS97012 | | Conformance to standards | | | | | | | | Auxiliary Contacts | | | | | | | | Endurance of auxiliary Con | ntacts | million | 0.5 | 0.5 | 0.5 | 0.5 | | | 24-110 V | Α | 6 | 6 | 6 | 6 | | AC-15 rating, | 220-440 V | Α | 4 | 4 | 4 | 4 | | 50 Hz | 360-440 V | Α | 4 | 4 | 4 | 4 | | | 525-600 V | Α | 1.2 | 1.2 | 1.2 | 1.2 | | | 24 V | Α | 6 | 6 | 6 | 6 | | | 110-125 V | Α | 1.1 | 1.1 | 1.1 | 1.1 | | DC-13 rating | 250 V | Α | 0.55 | 0.55 | 0.55 | 0.55 | | · | 480 V | Α | 0.31 | 0.31 | 0.31 | 0.31 | | | 500 V | Α | 0.27 | 0.27 | 0.27 | 0.27 | | | 600 V | Α | 0.2 | 0.2 | 0.2 | 0.2 | | Auxiliary terminal capacity | Solid or multistrand conductors | mm ² | - | - | - | - | | Operating time | Closing time | ms | 10 - 12 | 10 - 12 | 10 - 12 | 10 - 12 | | Operating time | Opening time | ms | 7 - 18 | 7 - 18 | 7 - 18 | 7 - 18 | | Coil | | | | | | | | Voltage available for 50/60 | Hz operation, Uc | ٧ | 110, 220, 240, 415 | 110, 220, 240, 415 | 110, 220, 240, 415 | 110, 220, 240, 415 | | Pick-up | VA | VA | 68 | 68 | 68 | 68 | | | VA | VA | 11 | 11 | 11 | 11 | | Hold-on | Watts | W | 4 | 4 | 4 | 4 | | Limits of operation | Pick-up | %U _c | 55 - 120 | 55 - 120 | 55 - 120 | 55 - 120 | | Limits of operation | Drop-off | %U _c | 30 - 50 | 30 - 50 | 30 - 50 | 30 - 50 | | Limits of operation with Ele | ctronic coil | V | | | | | | Safe isolationbetween coil | and auxiliary contacts | V | 400 | 400 | 400 | 400 | | Overall dimensions H x W | x D | mm ³ | 83 x 45 x 83.7 | | Mountingldimensions H x V | W | mm² | (60 - 65 - 70) x 35 | | Mounting clearance (front) | | mm | 10 | 10 | 10 | 10 | | Weight | | kg | 0.35 | 0.35 | 0.35 | 0.35 | | | | | | | | | | MCX 11 | MCX 12 | MCX 13 | MCX 22 | MCX 23 | | | | |-------------------------------------|--------------------------------------|-------------------------------------|-------------------|-------------------|--|--|--| | CS97013 | CS97014 | CS97015 | CS97017 | CS97018 | | | | | IS/IEC 60947-4-1 & IEC 60947-4-1 | | | | | | | | | | | | | | | | | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | | | | 6 | 6 | 6 | 6 | 6 | | | | | 4 | 4 | 4 | 4 | 4 | | | | | 4 | 4 | 4 | 4 | 4 | | | | | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | | | | | 6 | 6 | 6 | 6 | 6 | | | | | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | | | | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | | | | | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | | | | | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | | | | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | - | - | - | - | - | | | | | 10 - 12 | 10 - 12 | 10 - 12 | 15 - 35 | 15 - 35 | | | | | 7 - 18 | 7 - 18 | 7 - 18 | 10 - 25 | 10 - 25 | | | | | | | | | | | | | | 110/132,220/264,
240/288,415/500 | 110/132, 220/264,
240/288,415/500 | 110/132,220/264,
240/288,415/500 | 240/288,415/500 | 240/288,415/500 | | | | | 180 | 180 | 180 | 190 | 190 | | | | | 22 | 22 | 22 | 22 | 22 | | | | | 5 | 5 | 5 | 7.5 | 7.5 | | | | | 50 - 110 | 50 - 110 | 50 - 110 | 65 - 120 | 80 - 110 | | | | | 25 - 45 | 25 - 45 | 25 - 45 | 40 - 60 | 40 - 60 | | | | | 100 - 300 | 100 - 300 | 100 - 300 | 100 - 300 | 100 - 300 | | | | | 400 | 400 | 400 | 400 | 400 | | | | | 80 x 83.5 x 91.8 | 80 x 83.5 x 91.8 | 80 x 83.5 x 91.8 | 109 x 103 x 120.5 | 109 x 103 x 120.5 | | | | | (55 - 58) x 70 | (55 - 58) x 70 | (55 - 58) x 70 | 80 x 85 | 80 x 85 | | | | | 10 | 10 | 10 | 10 | 10 | | | | | 0.8 | 0.8 | 0.8 | 1.3 | 1.3 | | | | - Range from 18-900A AC1 - > Wide operating band upto 100A AC1 - Compact mechanical interlock arrangement upto 80A | Туре | | Unit
| MCX 32 | MCX 33 | MCX 34 | |---------------------------|---|-----------------|--------------|--------------|------------| | Catalogue no. | | | CS97020 | CS97021 | CS97022 | | Conformance to standar | ds | | | | | | Preferred DG ratings | | kVA | 100 | 125 | 160 | | Power contacts | | | | | | | No. of poles | | | 4 | 4 | 4 | | Number of built-inauxilia | rycontacts | | 2 NO + 2 NC | 2 NO + 2 NC | 2NO+2NC | | Rated insulationvoltage, | Ui | V | 1000 | 1000 | 1000 | | Rated operational voltag | e, U _e | V | 415 | 415 | 415 | | Rated impulse with stand | dvoltage, U _{imp} | kV | 8 | 8 | 8 | | Conventional thermal cu | rrent, lth/Utilisation category AC1 at 55°C | Α | 160 | 200 | 255 | | | 1 Second | Α | 1320 | 1320 | 1683 | | | 10 Seconds | Α | 880 | 1120 | 1428 | | Permissible short | 15 Seconds | Α | 500 | 500 | 638 | | timeratings | 1 Minute | Α | 400 | 400 | 510 | | | 10 Minutes | Α | 182 | 232 | 285 | | | 15 Minutes | Α | 180 | 225 | 280 | | Vibration resistance con | formingto IEC 60068-2-6 | | | | | | Ambient temperature | Service temperature | °C | | | | | around the device | Storage temperature | °C | | | | | Altitude without deration | | m | | | | | Degree of Pollution | | | | | | | Degree of protection | | | | | | | Protective treatment | | | | | | | Watt loss per pole | | W | 17 | 22 | 25 | | Type of Terminal | | | | | | | | Cable with Lug | mm² | 1 x 120 | 1 x 120 | 1 x 120 | | Maximum Main | Busbar (with spreader) | mm ² | 2 x (25 x 3) | 2 x (25 x 3) | 2x(25 x3) | | terminal capacity | Solid conductor | mm² | - | - | - | | | Multistrandconductors | mm ² | - | - | - | | Tightening Torque | Main Pole Terminal | mm² | M8 / 11 | M8 / 11 | M10 / 14 | | | Aux. Pole/Coil/Add on blockTerminal | mm ² | M3.5 / 1.1 | M3.5 / 1.1 | M3.5 / 1.1 | | | | | | | | | MCX 41 | MCX 42 | MCX 43 | MCX 44 | MCX 45 | MCX 46 | MCX 47 | |------------|--------------|--------------|----------------------|--------------|--------------|--------------| | CS97023 | CS97024 | CS97025 | CS97026 | CS97027 | CS97028 | CS94291 | | | | IS/IEC | 60947-4-1 & IEC 6094 | 17-4-1 | | | | 200 | 225 | 250 | 320 | 380 | 437.5 | 500 | | | | | | | | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 2NO+2NC | 2 NO + 2 NC | | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | 415 | 415 | 415 | 415 | 415 | 415 | 415 | | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | 325 | 360 | 400 | 560 | 600 | 700 | 900 | | 2500 | 2500 | 3500 | 4375 | 5250 | 6125 | 7000 | | 1800 | 1800 | 2400 | 3000 | 3600 | 4200 | 6400 | | 1200 | 1200 | 1500 | 1875 | 2250 | 2625 | 4500 | | 1000 | 1000 | 1100 | 1375 | 1650 | 1925 | 3500 | | 450 | 450 | 550 | 688 | 825 | 963 | 1400 | | 400 | 400 | 500 | 625 | 750 | 875 | 1300 | | | | | 5 300 Hz : 3g | | | | | | | | -20°C to +60°C | | | | | | | | -15°C to 80°C | | | | | | | | 3000 | | | | | | | | 3 | | | | | | | | IP 20 | | | | | | | | TH | | | | | 25 | 25 | 30 | 38 | 48 | 60 | 66 | | | | | Hexagon Head Screw | | | | | 2 x 240 | 2x(50 x5) | 2 x (50 x 5) | | - | - | - | - | - | - | - | | - | - | - | - | - | - | - | | M12 / 27 | M3.5 / 1.1 | | | | | | | | - Range from 18-900A AC1 - › Wide operating band upto 100A AC1 - Compact mechanical interlock arrangement upto 80A | Туре | | Unit | MCX 32 | MCX 33 | MCX 34 | |------------------------------|--------------------------------|-----------------|-----------------------------|-----------------------------|-----------------------------| | Catalogue no. | | | CS97020 | CS97021 | CS97022 | | Conformance to standards | | | | | | | Auxiliary Contacts | | | | | | | Endurance of auxiliary Cor | ntacts | million | 0.5 | 0.5 | 0.5 | | | 24-110 V | А | 6 | 6 | 6 | | AC-15 rating, | 220-440 V | А | 4 | 4 | 4 | | 50 Hz | 360-440 V | А | 4 | 4 | 4 | | | 525-600 V | А | 1.2 | 1.2 | 1.2 | | | 24 V | А | 6 | 6 | 6 | | | 110-125 V | А | 1.1 | 1.1 | 1.1 | | DC-13 rating | 250 V | А | 0.55 | 0.55 | 0.55 | | DC-13 fatting | 480 V | А | 0.31 | 0.31 | 0.31 | | | 500 V | А | 0.27 | 0.27 | 0.27 | | | 600 V | А | 0.2 | 0.2 | 0.2 | | Auxiliary terminal capacity | Solid or multistrandconductors | mm² | - | - | - | | Operating time | Closing time | ms | 20 - 40 | 20 - 40 | 20 - 40 | | Operating time | Opening time | ms | 10 - 25 | 10 - 25 | 10 - 25 | | Coil | | | | | | | Voltage available for 50/60 | Hz operation, U₀ | V | 110/132,240/288,
415/500 | 110/132,240/288,
415/500 | 110/132,240/288,
415/500 | | Pick-up | VA | VA | 550 | 550 | 550 | | Held on | VA | VA | 36 | 36 | 36 | | Hold-on | Watts | W | 10 | 10 | 10 | | Limits of operation | Pick-up (%U ₀) | %Uc | 80 - 110 | 80 - 110 | 80 - 110 | | Limits of operation | Drop-off(%Uc) | % U₀ | 35 - 65 | 35 - 65 | 35 - 65 | | Limits of operatio with Elec | tronic coil as an accessory | V | 100 - 300 | 100 - 300 | 100 - 300 | | Safe isolationbetween coi | and auxiliary contacts | ٧ | 690 | 690 | 690 | | Overall dimensionsH x W x | D | mm ³ | 175 x 183.5 x 152 | 175 x 183.5 x 152 | 175x183.5x152 | | MountingldimensionsH x V | V | mm² | 115 x 165 | 115 x 165 | 115 x 165 | | Mounting clearance (front) | | mm | 10 | 10 | 10 | | Weight | | kg | 4.6 | 4.6 | 4.6 | | | | | | | | | MCX 41 | MCX 42 | MCX 43 | MCX 44 | MCX 45 | MCX 46 | MCX 47 | |------------------------------|------------------------------|------------------------------|------------------------------|-----------------|-----------------|-----------------| | CS97023 | CS97024 | CS97025 | CS97026 | CS97027 | CS97028 | CS94291 | | IS/IE | EC 60947-4-1& IEC 60 |)947-4-1 | | | | | | | | | | | | | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 2 x 2.5 | 20 - 45 | 20 - 45 | 20 - 45 | 20 - 45 | 40 - 70 | 40 - 70 | 40 - 70 | | 10 - 25 | 10 - 25 | 10 - 25 | 10 - 25 | 30 - 60 | 30 - 60 | 30 - 60 | | | | | | | | | | 110/132, 240/288,
415/500 | 110/132, 240/288,
415/500 | 110/132, 240/288,
415/500 | 110/132, 240/288,
415/500 | 110, 240, 415 | 110, 240, 415 | 110, 240, 415 | | 2100 | 2100 | 2100 | 2100 | 1000 | 1000 | 1000 | | 95 | 95 | 95 | 95 | 25 | 25 | 25 | | 35 | 35 | 35 | 35 | 10 | 10 | 10 | | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | 80 - 110 | | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | 35 - 65 | | - | - | - | - | - | - | - | | 690 | 690 | 690 | 690 | 690 | 690 | 690 | | 275 x 248 x 221 | 170 x 225 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | 11.8 | 11.8 | 11.8 | 11.8 | 12.1 | 12.1 | 12.1 | | | | | | | | | ### **Ordering Information** #### **Accessories for MCX** #### Add-on blocks MNX / MCX Side Add-on Block #### **Mechanical Interlock Kit** MCX M3 (MCX 22) #### **Spares for MCX** Add Block First Left First Right Second Left Second Right Mechanical Interlock Kit Surge Suppressors* Electronic coil module on CS94117 CS94117 CS94117 CS94118 CS94118 CS94118 CS94119 CS94119 CS94119 CS94120 CS94120 CS94120 CS94121 CS94121 CS94121 CS92039 CS94220 CS94201 CS94201 CS94205 CS94205 CS94221 CS94202 CS94202 CS94206 CS94206 CS94126 ST50540 CS93095 SS94992 CS94301 CS94166 CS94163 CS94163 CS94164 CS94165 CS94203 CS94203 CS94207 CS94207 CS94204 CS94204 CS94208 CS94208 | | | 200 | - Control of the Party P | yig! | | | |----------------------------|---------------|----------------|--|----------------|----------------|----------------| | MCX Spare Kits Accessories | | | | | | | | | | MCX
01 - 04 | MCX
11 - 13 | MCX
22 - 23 | MCX
32 - 34 | MCX
41 - 47 | | Mounting | Configuration | Cat. No. | | | 4 NO | CS94112 | CS94112 | CS94112 | - | - | | | 3 NO + 1 NC | CS94113 | CS94113 | CS94113 | - | - | | | 2 NO + 2 NC | CS94114 | CS94114 | CS94114 | - | - | |
 1 NO + 3 NC | CS94115 | CS94115 | CS94115 | - | - | | Тор | 4 NC | CS94116 | CS94116 | CS94116 | - | - | | 100 | | | | | | | | Spares | | | | | | | |-------------|---------------|-----------------|--|--|--|--| | Contactor | Spare
Kits | Spare
Coil * | | | | | | MCX 01 - 04 | - | CS94105 | | | | | | MCX 11 | CS94077 | CS94009 | | | | | | MCX 12 | CS94078 | 0394009 | | | | | | MCX 22 | CS94331 | ST91291 | | | | | | MCX 23 | CS90078 | 3191291 | | | | | | MCX 32 | CS94082 | | | | | | | MCX 33 | CS94083 | CS94196 | | | | | | MCX 34 | CS94084 | | | | | | | MCX 41 | CS94295 | | | | | | | MCX 42 | CS94296 | CS94195 | | | | | | MCX 43 | CS94297 | 0334133 | | | | | | MCX 44 | CS94298 | | | | | | | MCX 45 | CS94299 | | | | | | | MCX 46 | CS94300 | CS94193 | | | | | | MCX 47 | CS90308 | | | | | | - * Add 4 Digit Coil Suffix as per required voltage. - * Ordering suffix for Aux. contact & MIL Kit is 0000. - # Available on demand. Contact nearest branch for more details. 2 NO 2 NC 1 NO 1 NC 1 NO + 1 NC Note: Mounting of side Add-on Aux. contact block is not recommended for mechanically interlocked MCX 11/12/13 Contactors. #### **Ordering Suffix for Coil Voltages** | Standard Coil Voltage at 50/60 Hz | 110 | 220 | 240 | 415 | |-----------------------------------|------|------|------|------| | Ordering Suffix | A000 | K000 | B000 | D000 | ### **Terminal Designation** #### MCX 01-04 #### MCX 11-13 #### MCX 22-23 #### MCX 32-34/MCX 41-44 #### MCX 45-47 ### **Contact Travel Diagram** #### MCX 01-04 ### MCX 01-04 (with MIL Kit) 98.15 91.8 62.9 MCX 11-13 #### MCX 11-13 (with MIL Kit) MCX 22-23 #### MCX 22-23 (with MIL Kit) MCX 32-34 ### MCX 32-34 (with MIL Kit) ### MCX 41-47 ### MCX 41-47 (with MIL Kit) ## **MO C Capacitor Duty Contactors** MO C Capacitor Duty Contactors are specially designed for capacitor switching applications. As capacitor switching is associated with high inrush current, the contactors are provided with damping resistors which limit the value of inrush current to a safe value. The contactors are used in APFC panels for switching power capacitors depending upon the amount of reactive power compensation required. ## **The Road To Higher Reliability** ### **Capacitor Duty Contactors** In keeping with the mission to deliver the best, E&A understands the requirements of the RoHS directive. The directive restricts the use of hazardous substances inelectrical and electronic equipment and bans electrical equipment containing more than permitted levels of lead, cadmium, mercury, hexavalent chromium, polybro minated biphenyl (PBS) and polybrominated diphenyl ether (PBDE) flame retardants. ## **Benefits of using MO C Contactors** ### **Benefits of using Capacitor Duty Contactors** Since switching of capacitor banks involves high transient inrush currents, the size of the contactor required to switch these high currents becomes higher. Hence, current limiting inductors are used in series to attenuate this inrush current. This increases the system cost and panel space. A typical case below illustrates the magnitude of transient inrush current for switching of a capacitor bank. For a 12.5 kVAr capacitor bank: Rated current of 12.5 kVAr 440V Capacitor = 16.4A Peak Inrush current without Damping Resistors = 1200A Capacitor Duty Contactors are designed to limit this high transient inrush current by introducing damping resistors with early make auxiliary contacts. The current limiting due to damping resistors protects the APFC system from harmful effects of the capacitor charging inrush current. Peak Inrush current with Damping Resistors = 260A. It is observed that peak inrush current with damping resistors is one fifth of that without damping resistors. As the contactor is now required to switch the rated capacitor current, the size of the contactor required is smaller. Thus the system cost and panel space are significantly lower when Capacitor Duty Contactors are used. ### **MO C Capacitor Duty Contactors** MO C Capacitor Duty Contactors are designed for switching 3 phase, single or multi-step capacitor bank. In conventional capacitor switching contactors, early make auxiliary contacts used for insertion of damping resistors used to remain in the circuit continuously. During current breaking these auxiliary contacts would also carry and break the currents due to higher arc resistance in the main pole during arcing. This current breaking by auxiliary contacts at higher transient recovery voltage causes unreliable product performance and premature product failures. MO C range of capacitor switching contactors have patented mechanism which disconnects the early make auxiliary contacts after the main contacts are closed. This completely eliminates the possibility of auxiliary contacts carrying and breaking the currents during breaking operation. This enhances the product switching performance and improves the product life. ### Features and benefits of MO C ContactorsCapacitor Duty | Feature | Customer Benefits | | |---|--------------------------------------|--| | De-latching auxiliary contacts | Improved switchingperformance | | | | Reduced losses in auxiliary contacts | | | Dual contactgap for auxiliary contacts | Higher electrical life | | | Encapsulated resistor assembly | Enhanced product safety | | | Ericapsulated resistor assembly | No flash over between phases | | | Separate termination of damping resistors | Ease if wiring | | | Separate terrification of damping resistors | Enhanced operational reliability | | | | Improved switchingperformance | | | Wide and chatter-freeoperating band | Higher electrical life | | | | Higher product reliability | | ## **Contactors Duty Capacitor** MO C Contactors are available in 9 different ratings within 3 different frame sizes. All Contactors are available with AC coils with a large variety of voltage range for 50 or 60 Hz. | Contactor | Rated operational Current
(AC-6b) at 440V, 50Hz | kVAr rating at
440 V | |-----------|--|-------------------------| | MO C 3 | 3.9 | 3 | | MO C 5 | 6.6 | 5 | | MO C 8.5 | 11.2 | 8.5 | | MO C 10 | 13.1 | 10 | | MO C 12.5 | 16.4 | 12.5 | | MO C 15 | 19.7 | 15 | | MO C 20 | 26.2 | 20 | | MO C 25 | 32.8 | 25 | | MO C 30 | 39.4 | 30 | | MO C 40 | 52.5 | 40 | | MO C 50 | 65.6 | 50 | | MO C 60 | 78.7 | 60 | | MO C 75 | 98.4 | 75 | | MO C 85 | 111.5 | 85 | | MO C100 | 131.2 | 100 | ### Possible Reasons of damage of Capacitor Duty Contactor and how MOC addresses them 1.Damping resistors are intact but connection terminals are damaged. This can happen if the damping resistors are disconnected from the system during switch on. The damage is due to the fact that the main terminals would have seen the entire inrush current as the damping resistors were disconnected and there was no current limiting. MOC addresses this by having separate connections for damping resistors which are crimped. Under no circumstances will the damping resistors become loose or disconnecting, thereby the main contacts will never see entire inrush current. 2.Burning of discharge resistors over a period of time due to overheating. This happens if the damping resistors are continuously in circuit. If the capacitors are overloaded due to harmonics, high current will flow continuously through the damping resistors, thereby causing overheating. MOC addresses this by have resistor with de-latching operation. This means after the initial make operation, the resistors are disconnected from the system and only main contacts are present. Even if there is higher current due to capacitor overload, the resistors will not see that current as they are disconnected. There will be no damage to the main contacts too as they have a high thermal rating. 3.Burning of resistors due to chattering / continuous makebreak. The band of MO C Contactors coil is 75% - 110% of specified coil voltage. Voltage dips can be absorbed by MOC Contactors as they have a sufficiently high operating band. However, any rise or drop in control voltage beyond this can result in overloading or chattering. ### **Effect of Under-voltage on Capacitor Duty Contactor** MO C, capacitor duty contactor is designed such that the main contacts never carry the peak inrush current of the capacitor under normal condition. There is a de-latching mechanism in MO C contactor. latching mechanism for opening and closing of the damping resistor as sembly. This mechanism puts the resistor system in circuit for first few mili-seconds after the close command is given to contactor. Once the peak inrush current is passed, main contacts are closed and resistors are disconnected from the circuit. This can be understood with the timing diagram shown below in fig 1: Timing diagram for de-latching and main contacts operation (For illustration purpose only) But in case of under-voltage condition the electromagnetic force produced in the magnet system is not sufficient to close the magnet system completely, which may result in two scenarios: - 1.Damping resistor contacts, which are early make contacts, get closed but the force is insufficient for closing main contacts and as a result de-latching does not occur. - 2.Another scenario can be when the contactor starts chattering because of low voltage. And the latching contacts close and open again and again with a frequency higher than the recommended switching frequency. In both the cases resistors heat up because of repetitive passage of high current through them. This excessive heating can be as high as to burn the resistor block. Because of under-voltage, coil also draws current higher than its rated current. This damages the coil. Burnt or damaged coil again indicates the under-voltage. As discussed above that in case of under-voltage, electromagnetic force is not sufficient to close the main contacts. And there won't be any damage to main contacts. It can be inferred now that if capacitor duty contactor's
resistor assembly is found burnt along with burnt coil and healthy main contacts, the contactor has failed because of under-voltage. Solution to protect the contactor from damage because of under-voltage: There can be two probable solutions to protect the contactor from under-voltage condition:- - 1.Use APFC relays with under-voltage setting. Set the under-voltage at 75%. In case of under-voltage APFC relay will give trip command to incomer. - 2.Use under voltage relay. Connect coil supply in series with NO contact of under voltage relay (non failsafe relay). When the relay gets healthy supply voltage, the normally open contacts close and only then will coil of the contactor gets supply through APFC relay output. In case of under-voltage this contact will open and coil supply will be withdrawn. ### **Technical Specification** - Available for capacitor range from 3 100 kVAr - Modular design saving precious panel space - De-Latching auxiliary contacts - Separate termination of damping resistors - > Encapsulated resistor assembly ensuring safety - Lug as well as Lugless termination | Type Designation | | | Units | мо сз | MO C5 | MO C8.5 | | |-------------------------|------------------------------------|-----------------------------|--------------|-------------|-------------|-------------|--| | kVAr Rating (at Sy | /stem voltage 440V)# | | kVAr | 3 | 5 | 9 | | | Catalogue No. | | Built in
Aux
Contacts | 1 NO/
1NC | CS96146 | CS96127 | CS96320 | | | Conformance to S | tandards | | | | | | | | Rated Operational C | urrentat 440 V, 50 / 60 Hz (AC-1) | le | Α | 10 | 10 | 25 | | | Rated Operational C | urrentat 440 V, 50 / 60 Hz (AC-6b) | le | Α | 3.9 | 6.6 | 11.2 | | | Short Circuit Prote | ection | | | | | | | | Max. Operational | Voltage | Ue | V | 690 | 690 | 690 | | | Rated insulationV | /oltage | Ui | V | 1000 | 1000 | 1000 | | | Rated Impulse Wi | thstand Voltage | Uimp | kV | 8 | 8 | 8 | | | Degree of Protect | ion | | | | | | | | | Cable with Ferrule type Lug | | mm | | | | | | | Cable withPin type Lug | | mm | | | | | | Main Terminal | Cable withFork type Lug | | mm | | | | | | Capacity No. of cable x | Cable withRing type Lug | | mm | | | | | | (Max.Range - | Solid Conductor | | mm² | 2 x 10 | 2 x 10 | 2 x 10 | | | Min.Range) | Stranded Conductor | | mm² | 2 x 6 | 2 x 6 | 2 x 6 | | | | Finely Stranded Conductor | | mm² | 2 x 6 | 2 x 6 | 2 x 6 | | | Coil Operating | Pick-up | | V | 65 - 110 | 65 - 110 | 65 - 110 | | | Band | Drop-off | % U _c | V | 35 - 65 | 35 - 65 | 35 - 65 | | | 0.11 | Pick-up | % Uc | VA | 77 | 77 | 77 | | | Coil Consumption | Hold-on | | VA | 9 | 9 | 9 | | | Consumption | Hold-on | | W | 3 | 3 | 3 | | | Life (Operating Cu | (alaa) | Mechanical | Million | 10 | 10 | 10 | | | Life (Operating Cy | cies) | Electrical | Million | 0.2 | 0.2 | 0.2 | | | Max. Operating Fr | equency | Operatio | ns / Hr | 240 | 240 | 240 | | | Operating | Making | | | | | | | | Sequence | Breaking | | | | | | | | | Height | Н | mm | 87 | 87 | 87 | | | Overall | Width | W | mm | 45 | 45 | 45 | | | Dimensions | Depth | D | mm | 133.5 | 133.5 | 133.5 | | | | Mounting Dimensions | | mm | 35x60-65-70 | 35x60-65-70 | 35x60-65-70 | | | Wattlossper pole | | | W | 0.03 | 0.08 | 0.2 | | | Weight | | | kg | 0.52 | 0.52 | 0.52 | | | | | | | | | | | Note: Contact replacement is not permitted in MO C contactors * Accessories and Spares same as that of MO contactor. ** With spreader link - "With spreader link KVAr ratings should be selected as per the net kVAr of the capacitor reactor combination irrespective of capacitor voltage (440V/480V/525V) While selection it should be ensured that current rating of capacitor is less than the current through the contactor Use spreader while using 16 sq.mm cable Terminal capacity mentioned is with spreader | 10 mm 11 11 11 11 11 11 11 11 11 11 11 11 | The state of s | | | The state of s | | |---|--|----------------------------|-------------|--|------------------------------| | MO C10 | MO C12.5 | MO C15 | MO C20 | MO C25 | MO C30** | | 10 | 13 | 15 | 20 | 25 | 30 | | CS96156 | CS96321 | CS90019 | CS90021 | CS96322 | CS96148** | | IS/IEC 60 | 947-4-1,IEC 60947-4-1,EN | 60947-4-1 | | | | | 25 | 40 | 40 | 50 | 50 | 55 | | 13.1 | 16.4 | 19.7 | 26.2 | 32.8 | 39.4 | | g | G type fuses rated at 1.5-2 | le | | | | | 690 | 690 | 690 | 690 | 690 | 690 | | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | 8 | 8 | 8 | 8 | 8 | 8 | | | IP20 | | | | | | | 1 x (4-10) | | | | - | | | 1 x (4-10) | | | | - | | 1 x | (4-10), For width 12.4 mm N | ∕lax. | | | - | | | - | | | | 2x16 max lug palm width 12mm | | 2 x 10 ^{\$} | - | | 2 x 6 | 2 x 6 | 2 x 6 2 x 6 2 x 6 | | 2 x 6 ^{\$} | - | | 2 x 6 | 2 x 6 | 2 x 6 2 x 6 2 | | 2 x 6 ^{\$} | 2 x16 ^{\$\$} | | 65 - 110 | 65 - 110 | 65 - 110 65 - 110 65 - 110 | | 65 - 110 | | | 35 - 65 | 35 - 65 | 35 - 65 35 - 65 35 - 65 | | 35 - 65 | | | 77 | 77 | 77 | 77 77 77 | | 77 | | 9 | 9 | 9 | 9 | 9 | 9 | | 3 | 3 | 3 | 3 | 3 | 3 | | 10 | 10 | 10 | 10 | 10 | 10 | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 240 | 240 | 240 | 240 | 240 | 240 | | | Early Make / N | 1ain | | | | | | Main Contacts E | Break | | | | | 87 | 87 | 87 | 87 | 87 | 115** | | 45 | 45 | 45 | 45 | 45 | 56** | | 133.5 | 133.5 | 133.5 | 133.5 | 133.5 | 133.5** | | 35x60-65-70 | 35×60-65-70 | 35x60-65-70 | 35x60-65-70 | 35x60-65-70 | 35x60-65-70 | | 0.3 | 0.5 | 0.7 | 1.3 | 2.0 | 2.9 | | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.56** | | | | | | | | ### **Technical Specification** - Available for capacitor range from 3 100 kVAr - > Modular design saving precious panel space - > De-Latching auxiliary contacts - Separate termination of damping resistors - > Encapsulated resistor assembly ensuring safety - Lug as well as Lugless termination | Lug as well as | Lugless termination | | | m . | | | |----------------------------|------------------------------------
-----------------------------|--------------|-------------|-----------------|--------------------------------| | Type Designation | | | Units | MO C40 | MO C50 | MO C60 | | kVAr Rating (at Sy | vstem voltage 440 V)# | | kVAr | 40 50 | | 60 | | Catalogue No. | | Built in
Aux
Contacts | 1 NO/
1NC | CS96147 | CS96147 CS96324 | | | Conformance to S | tandards | | | | | | | Rated OperationalCu | urrentat 440 V, 50 / 60 Hz (AC-1) | le | Α | 80 | 90 | 100 | | Rated OperationalCu | urrentat 440 V, 50 / 60 Hz (AC-6b) | le le | Α | 52.5 | 65.6 | 78.7 | | Short Circuit Prote | ection | | | | | | | Max. Operational | Voltage | Ue | V | 690 | 690 | 690 | | Rated insulation V | oltage/ | Ui | V | 1000 | 1000 | 1000 | | Rated Impulse Wi | thstand Voltage | Uimp | kV | 8 | 8 | 8 | | Degree of Protect | ion | | | | | | | | Cable with Ferrule type Lug | | mm | 1 x (25-35) | , 2 x (16-25) | - | | | Cable withPin type Lug | | mm | 1 x (25-35) | , 2 x (16-25) | - | | Main Terminal | Cable withFork type Lug | | mm | | - | - | | Capacity No. of cable x | Capacity Cable withRing type Lug | | mm | - | | 2 x 50 max lug palm width 12mn | | (Max.Range -
Min.Range) | Solid Conductor | | mm² | - | - | - | | wiii.narige) | Stranded Conductor | | mm^2 | 2 x (10-35) | 2 x (10-35) | 2 x 35 ^{\$\$} | | | Finely Stranded Conductor | | mm^2 | 2 x (10-35) | 2 x (10-35) | 2 x 35 ^{\$\$} | | Coil Operating | Pick-up | | V | 75 - 110 | 75 - 110 | 75-110 | | Band | Drop-off | % U _c | V | 35 - 65 | 35 - 65 | 35 - 65 | | Oail | Pick-up | % U _c | VA | 144 | 144 | 144 | | Coil
Consumption | Hold-on | | VA | 15 | 15 | 15 | | Concumption | Holu-oli | | W | 6 | 6 | 6 | | Life (Operating Cy | clas) | Mechanica | l Million | 10 | 10 | 10 | | Life (Operating by | cies) | Electrical | Million | 0.2 | 0.2 | 0.2 | | Max. Operating Fr | equency | Operatio | ns / Hr | 240 | 240 | 240 | | Operating | Making | | | | | | | Sequence | Sequence Breaking | | | | | | | | Height | Н | mm | 123.5 | 123.5 | 174** | | Overall | Width | W | mm | 55 | 55 | 73** | | Dimensions | Depth | D | mm | 163 | 163 | 163** | | | Mounting Dimensions | | mm | 45x100-105 | 45x100-105 | 45x100-105 | | Wattlossperpole | | | W | 4.1 | 6.4 | 9.2 | | Weight | | | kg | 1.15 | 1.15 | 1.32** | | | | | | | | | Note: Contact replacement is not permitted in MO C contactors - * Accessories and Spares same as that of MO contactor. ** With spreader link # kVAr ratings should be selected as per the net kVAr of the capacitor reactor combination irrespective of capacitor voltage (440V/480V/525V) # While selection it should be ensured that current rating of capacitor is less than the current through the contactor \$ Use spreader while using 16 sq.mm cable \$\$ Terminal capacity mentioned is with spreader | MO C75 | MO C85 | MO C100 | |--------------------------|----------------------|--------------------------------| | 75 | 85 | 100 | | CS96150 | CS96160 | CS96158 | | IS/IEC 60947-4-1,IEC 609 | 947-4-1,EN 60947-4-1 | | | 140 | 140 | 180 | | 98.4 | 111.5 | 130 | | gG type fuses ra | ted at 1.5-2 le | | | 690 | 690 | 690 | | 1000 | 1000 | 1000 | | 8 | 8 | 8 | | IP20 | | | | 1 x (50-70), | 2 x (25-35) | - | | 1 x (50-70), | 2 x (25-35) | - | | - | - | - | | - | - | 2 x 95 max lug palm width 25mm | | - | - | - | | 2 x (16-70) | 2 x (16-70) | - | | 2 x (16-70) | 2 x (16-70) | - | | 75 - 110 | 75 - 110 | 75 - 110 | | 35 - 65 | 35 - 65 | 35 - 65 | | 240 | 240 | 240 | | 25 | 25 | 25 | | 9 | 9 | 9 | | 10 | 10 | 10 | | 0.2 | 0.2 | 0.2 | | 240 | 240 | 240 | | Early Make / Main | | | | Main Contacts Break | | | | 135 | 135 | 195** | | 70 | 70 | 95** | | 175 | 175 | 175** | | 60x115-120 | 60x115-120 | 60x115-120 | | 9.4 | 12.1 | 12.1 | | 1.72 | 1.72 | 1.9** | # **Ordering Information** ### **Salient Features & Benefits** | Product Designation | kVAr Rating @ 440V 50Hz | In Built Aux contacts | Cat. No.* | |---------------------|-------------------------|-----------------------|-----------------| | MO C3 | 3 | 1 NO/1 NC | CS96146/CS96151 | | MO C5 | 5 | 1 NO/1 NC | CS96127/CS96128 | | MO C8.5 | 8.5 | 1 NO/1 NC | CS96320/CS96337 | | MO C10 | 10 | 1 NO/1 NC | CS96156/CS96159 | | MO C12.5 | 12.5 | 1 NO/1 NC | CS96321/CS96338 | | MO C15 | 15 | 1 NO/1 NC | CS90019/CS90020 | | MO C20 | 20 | 1 NO/1 NC | CS90021/CS90022 | | MO C25 | 25 | 1 NO/1 NC | CS96322/CS96339 | | MO C30 | 30 | 1 NO/1 NC | CS96148/CS96153 | | MO C40 | 40 | 1 NO/1 NC | CS96147/CS96152 | | MO C50 | 50 | 1 NO/1 NC | CS96324/CS96341 | | MO C60 | 60 | 1 NO/1 NC | CS96149/CS96154 | | MO C75 | 75 | 1 NO/1 NC | CS96150/CS96155 | | MO C85 | 85 | 1 NO/1 NC | CS96157/CS96160 | | MO C100 | 100 | 1 NO/1 NC | CS96158/CS96161 | ^{*}Add four digit suffix as per coil voltage ### **Accessories & Spares** #### **Add on Blocks** | Mounting Position | Contacts | Cat. No. | |--------------------------|-------------|-------------| | First Left | 1 NO + 1 NC | CS945800000 | | First Right | 1 NO + 1 NC | CS945810000 | | Second Left | 1 NO + 1 NC | CS945820000 | | Second Right | 1 NO + 1 NC | CS945830000 | #### **Spare Coils** | For Contactor | Cat. No. | |---------------|----------| | MO C3 - C30 | CS96317 | | MO C40 - 60 | CS96318 | | MO C75 - 100 | CS96319 | ^{*} Add four digit suffix as per coil voltage #### **MO C Spreader Link Kit** | For Contactor | Cat. No. | |---------------|-------------| | MO C3-30 | CS942740000 | | MO C40-60 | CS940930000 | | MO C75-100 | CS940940000 | Note:1) Spreader Link Kit consists of six moulded links and four phase barriers ## **Ordering Suffix for Coil Voltages** | Std Coil Voltage | 110 | 220 | 240 | 415 | |------------------------------|------|------|------|------| | Ordering Suffix - 50 / 60 Hz | A000 | K000 | B000 | D000 | # **Overall Dimensions** ## **Surge Suppressor** | Suitable for Contactors | Suitable for coil voltage | Cat. No. | |--------------------------------|---------------------------|-------------| | MO Frame - 0/1 | 110V, AC | CS91706A000 | | MO0 Control | 220-320V, AC | CS91706B000 | | MO C Frame - 1 | 360-415V, AC | CS91706D000 | | MO Frame - 2 | 110V, AC | CS91707A000 | | MO C Frame - 2 | 220-320V, AC | CS91707B000 | | | 360-415V, AC | CS91707D000 | | MO Frame - 3
MO C Frame - 3 | 110V, AC | CS91708A000 | | | 220-320V, AC | CS91708B000 | | | 360-415V, AC | CS91708D000 | | MO Frame - 4/5 | 24-110V, AC | CS91854A000 | | | 220-240V, AC | CS91854B000 | | | 360-525V, AC | CS91854D000 | All dimensions in mm. # **Ordering Information** ### MO C | Label | | MO C | | |-------|--------|---------|---------| | Labei | 3 - 25 | 40 - 50 | 75 - 85 | | W | 45 | 55 | 70 | | D | 133.5 | 163 | 175 | | Н | 87 | 123.5 | 135 | | N | 26 | 26 | 26 | | Т | 60 | 68 | 68 | | С | 22.8 | 27 | 35 | | L | 19.6 | 29.5 | 30 | | S | 50 | 82 | 93 | | Р | 14.4 | 18 | 23 | | Α | 113 | 142 | 154 | ## MO C Frame 1 (with spreader links) / MO C 30 # **Overall Dimensions** ## MO C Frame 2 (with spreader links) / MO C 60 ## MO C Frame 3 (with spreader links) / MO C 100 ## MO0 Auxiliary Contactors MO0 control contactors are basic 4 pole contactor. These contactors can be used for building control logics. With addon blocks these contactor can give you a maximum 8 auxiliary contact (6 NC and above combination is not allowed). We have MO0 DC basic four pole contactor relays. The no. of contacts can be extended upto 8 NO to 4 NC. These contactor are suitable for industrial as well as commercial installations where complex control is required. # The Master Key To Every Control Requirement # **Terminal Details M00 AC** ### **Salient Features & Benefits** - > Compact dimensions saving precious panel space - > In-built surge supressor with the coil - > DIN Rail mounting facility - > Lug as well as Lugless termination - > RoHS compliant | Contact Combination | 4 NO | 3 NO + 1 NC | 2 NO + 2 NC | |----------------------------|----------|-------------|-------------| | Туре | MO 0 40E | MO 0 31E | MO 0 22E | | AC Control | CS91623 | CS91624 | CS91625 | | Туре | | Units | MOOAC | |---|--------------------|-----------------|---| | Conformance to standards | | | IS/IEC 60947-5-1JEC 60947-5-1EN 60947-5-1 | | No. of poles | | | 4 | | Ratedinsulation voltage (Ui) | | V | 1000 | | Rated operation voltage (U _e) | AC-15 | | 690 V AC | | nated operation voltage (Oe) | DC-13 | | 220 V DC | | Ratedimpulse withstand voltage | | kV | 8 | | Thermal current (Ith) @ 55°C | | Α | 10 | | | | Α | 2A at 690 V AC | | | AC-15 | Α | 4A at 415 V AC | | Rated operational current (I _e) | | Α | 10A at 240 V AC | | | DO 10 | Α | 0.3A at 220 V DC | | | DC-13 | Α | 0.6A at 110 V DC | | Mechanical life | | million | 10 | | Electricalife(AC-15Duty)@ 415V @ 4A | | million | 1 | | | Mechanical | cy / hr | 7200 | | Max. frequencyof operations (op. cycle/hr) | AC-15 | cy / hr | 1200 | | | DC-13 | cy / hr | 1200 | | | Solid conductor | mm ² | 2 x 4 | | Terminal capacity | Stranded conductor | mm ² | 2 x 2.5 | | Terrimareapacity | Pin type lug | mm^2 | 2 x 2.5 | | | Fork type lug | mm ² | 1 x 2.5 | | Coil | | | | | Rated coil voltages (Uc) | 50 Hz / 60Hz | V | 24, 110, 220, 240, 415 | | Consumption | Pick up | VA | 68 | | Consumption | Hold on | VA | 9 | | | Hold on | W | 2.8 | | Operating limits %Uc | Pick-up | %Uc | 65 - 110 | | | Drop-off | %Uc | 30 - 55 | | Overall dimension H X W X D | | mm | 86.5 x 45 x 89 | # **Terminal Details M00 AC** ## Add-on auxiliary contact block **MO Top Add-on Block** #### **Spares** | Description | Cat. No. | |-------------|----------| | Spare Coil | CS94841* | * Add 4 digit suffix as per required coil voltage given below. | Type designation | Mounting Position | Contacts | Terminal Marking | Cat. Nos. | |------------------|-------------------------|-------------|------------------------------------|-------------| | MO-SA | Top Mounted Single Pole | 1 NO | 53 - 54 | CS945850000 | | MO-SA | Top Mounted Single Pole | 1 NC | 51 - 52 | CS945860000 | | MO-TA1 |
Top Mounted Two Pole | 2 NO | 53 - 54, 63 - 64 | CS945910000 | | MO-TA2 | Top Mounted Two Pole | 1 NO + 1 NC | 53 - 54, 61 - 62 | CS945920000 | | MO-TA2 | Top Mounted Two Pole | 2 NC | 51 - 52, 61 - 62 | CS945930000 | | MO-TA4 | Top Mounted Four Pole | 4 NO | 53 - 54, 63 - 64, 73 - 74, 83 - 84 | CS945940000 | | MO-TA4 | Top Mounted Four Pole | 3 NO + 1 NC | 53 - 54, 63 - 64, 73 - 74, 81 - 82 | CS945950000 | | MO-TA4 | Top Mounted Four Pole | 2 NO + NC | 53 - 54, 63 - 64, 71 - 72, 81 - 82 | CS945960000 | | MO-TA4 | Top Mounted Four Pole | 1 NO + 3 NC | 53 - 54, 61 - 62, 71 - 72, 81 - 82 | CS945970000 | | MO-TA4 | Top Mounted Four Pole | 4 NC | 51 - 52, 61 - 62, 71 - 72, 81 - 82 | CS945980000 | ## **Ordering Suffix for Coil Voltages** | Std Coil Voltage at 50 Hz | 24 | 110 | 220 | 240 | 415 | |---------------------------|------|------|------|------|------| | Ordering Suffix | G000 | A000 | K000 | B000 | D000 | # **Terminal Details M00 AC** - > Compact dimensions saving precious panel space - > In-built surge suppressor with coil - > DIN rail mounting facility - > Lug as well as lugless termination - > Rohs Complaint | Contact Combination | 4 NO | 3 NO + 1 NC | 2 NO + 2 NC | |----------------------------|-------------|-------------|-------------| | Туре | MO 0 DC 40E | MO 0 DC 31E | MO 0 DC 22E | | DC Control | CS90045 | Cs90046 | Cs90047 | | Parameters | | Units | MO0 DC | |--|---------------|-------------|------------------------| | Conformance to standards | | | IS/IEC 60947-5-1 | | No of Poles | | | 4 | | Rated InsulationVoltage (Ui) | | V | 1000 | | Rated operationalVoltage (Ue) | AC-15 | V | 690 V AC | | riated operational voltage (oc) | DC-13 | V | 220 V DC | | Rated Impulse with stand Voltage | | kV | 8 | | Thermal current (Ith) @ 45°C | | Α | 10 | | | | | 2A at 690 V AC | | | AC-15 | Α | 4A at 415 V AC | | Rated Operational Current (le) | | | 10A at 240 V AC | | | DC-13 | А | 0.3A at 220 V DC | | | DO 13 | ^ | 0.6A at 110 V DC | | MechanicalLife | | Million | 10 | | Electrical Life (AC-15 Duty) @415V @4A | | Million | 1 | | Max. frequency of operations (op.cycle/hr) | Mechanical | Cycle/Hours | 7200 | | max. requeries of operations (op.osole, iii) | Electrical | Cycle/Hours | 1200 | | | Solid | mm² | 2 x 4 | | Terminal capacity | Stranded | mm² | 2 x 2.5 | | Terrimaroapaorty | Pin type Lug | mm² | 2 x 2.5 | | | Fork type Lug | mm² | 1 x 2.5 | | Coil | | | | | Rated coil voltage (Uc) | | V | 24, 110, 220, 480 V DC | | Consumption | Hold On | W | 5.4 | | Operating Limits% Uc | Pick Up | %Uc | 70 - 120 | | Operating Limits % OC | Drop off | %Uc | 60 - 10 | | Overall Dimensions (H x W x D) | | mm | 83.5 x 45 x 111 | ## **Ordering Suffix for Coil Voltages** | Coil Voltage V DC | 24 | 48 | 110 | 220 | |-------------------|------|------|------|------| | Suffix | 4000 | 5000 | 1000 | 2000 | # **Terminal Designation** 2NO + 2NC 3 NO + 1 NC **4 NO** # **Overall Dimensions** ## MO0 AC ### MO0 DC # **Electronic Coil Contactors for AC/DC Operation** MDX 50 - 110 A, MO 140 - 300 A and MVO 400 to 820 A are available with universal AC/DC electronic coil version. Electronic coils have wide operating band, serving as an energy efficient solution and thus reducing overall powerconsumption. These coils provide flexibility in using AC as well DC control supply and are available from 20V up to 415V. # **Electronic Coil Range** #### **Salient Features & Benefits** - MO 140 to 300A and MDX 50 to 115A are available with universal AC/DC electronic coil version. - > The electronic coil have voltage range starting from 20-48V to 240-415 V. ### **MDX Contactor** | Туре | AC-1 Rating (A) | AC-3 Rating (A) | Cat Nos | |---------|-----------------|-----------------|---------| | MDX 50 | 90 | 50 | CS91584 | | MDX 65 | 110 | 65 | CS91585 | | MDX 80 | 125 | 80 | CS91586 | | MDX 95 | 125 | 95 | CS91587 | | MDX 115 | 125 | 115 | CS91588 | ### **MO Contactor** | Туре | AC-1 Rating (A) | AC-3e Rating (A) | Cat Nos | |--------|-----------------|------------------|---------| | MO 140 | 250 | 140 | CS95042 | | MO 185 | 275 | 185 | CS95047 | | MO 225 | 275 | 225 | CS95052 | | MO 250 | 400 | 250 | CS94456 | | MO 300 | 500 | 300 | CS94464 | ## **Ordering Suffix for Coil voltage** | Coil Voltage | 20-48 | 60-110 | 110-240 | 240-415 | |--------------|------------|------------|------------------------|------------| | Suffix | J000 | A000 | B000 | D000 | | Contactor | MDX 50-115 | MDX 50-115 | MDX 50-115& MO 140-300 | MO 140-300 | # MR Single Pole Contactors MR range caters to single phase applications. The contactors are rugged and have a wide operating band upto 25A (AC-3). Typical applications include Compressors in air-conditioning equipment, Single Phase Pumps, Single Phase Power Supply, Single Phase Heater etc. Their high AC-1 rating ensures better overload capacity. # **Access new Levels** of Versatility - > Wide operating band upto 25A AC-3 - High AC-1 rating ensuring better overload capacity - > Fast on termination (optional) | Type Designation | | Units | MR 11W | MR 11NW | MR 13 | |------------------------------------|---------------------|---------|--------------|----------------------|----------------| | Catalogue no. | | | CS94176 | CS94177 | CS94992 | | Conforms to standards | | | IS/IE | C 60947-4-1,IEC 6094 | 7-4-1 | | Power Contacts | | | | | | | No. of poles | | | 1 | 1+ shunted neutral | 1 | | Rated insulation voltage (Ui) | | V | | 690 | | | Rated impulse withstand voltage | (U _{imp}) | kV | 8 | | | | Conventional thermal current, Ith | (AC-1) | Α | 63 | 63 | 63 | | Motor duty: single phase 240 V, 50 |) Hz (AC-3) | kW/hp/A | 3.7 / 5 / 25 | 3.7 / 5 / 25 | 5.5 / 7.5 / 40 | | Motor duty single phase 240 V, 50 | Hz (AC-4) | kW/hp/A | 3.7 / 5 / 25 | 3.7 / 5 / 25 | 5.5 / 7.5 / 40 | | Short-circuit protection | gG fuse at 240 V | Α | 63 | 63 | 100 | | Mechanical life | | Million | 10 | 10 | 10 | | Maximum frequency : (No Load) | | Cy/h | 7200 | | | | | (AC-1) | Cy/h | | 3000 | | | | (AC-3) | Cy/h | | 750 | | | | (AC-4) | Cy/h | | 300 | | | Service temperature | | Ĉ | | -5°C to 55°C | | | Main terminal capacity | Solid conductor | Sq. mm | | 1 x 10 | | | Main terminal capacity | Multi strand | Sq. mm | | 2 x 10 | | | Coil | | | | | | | Voltages available at 50 Hz, Uc | | V | | 24, 220, 240 | | | | Pick-up | VA | | 40 | | | | Hold-on | VA | | 8.5 | | | Tiold off | | W | | 2.5 | | | Limits of operation | Pick-up | (% Uc) | 60 - 110 | 60 - 110 | 80 - 110 | | Limits of operation Drop-off | | (% Uc) | 20 - 50 | 20 - 50 | 20 - 65 | Note: Ordering suffix BOOO-240 V, 50 Hz ## Add on Auxiliary Contact Block for MR | Auxiliary contact block | | Units | | |--|----------------------------|-----------------|----------------------------------| | Type designation | | | MR-A1 | | Catalogue no. | | | CS94179 | | Conforms to standards | | | IS /IEC 60947-5-1, IEC 60947-5-1 | | For contactors | | W | MR 11W / MR 11NW | | Contacts | | | | | No. of poles | | | 1 | | Contact details | | | 1 NO | | Rated insulation voltage, U | | V | 690 | | Conventional thermal current, Ith | | Α | 10 | | Rated current at 240 V, 50 Hz | Utilization category AC-15 | Α | 4 | | hort-circuit protection gG fuse at 240 V | | Α | 10 | | Electrical durability (AC-15) at 240 V, 50 Hz | | Million | 1 | | Maximum frequency of operation UC at for AC-15 | | Cy/h | 1200 | | Service temperature | | °C | -5°C to 55°C | | Terminal capacity | Solid conductors | mm ² | 2 x 2.5 | | Terrimian dapatorey | Multi-stranded conductors | mm² | 2 x 2.5 | | | | | | # **Overall Dimensions** ## 42.5 75.8 88.4 ### MR 11W / MR 13 ### **MR 11NW** All dimensions in mm. # MU - 2P 2 Pole Contactors MU Contactors are true 2 pole contactors with isolated neutral useful in motor starters. Available for 16-40~A current rating suitable for low voltage conditions. # **One step Towards Smoother Start** #### **Features** - > True 2 Pole Contactor - > Top Mounted Relay - > Top Mounted 2 Pole Add-on Wide Band Potted Coil ### **Applications** - Single Phase Pump Control - Single Phase Motors #### **Benefits** - › Neutral Isolation - › Suitable For Low Voltage Conditions - > High Temperaturre With Stand Capability - > Coil Protection From Humid Environment | | | Units | MU 16-2P | MU 25-2P | MU 40-2P | |--|-------------------------|-----------------|-------------------------------|---------------------|----------| | Catalogue No. | | | CS90117 | CS90118 | CS90119 | | Conformance to standards | | | IS/IEC | 60947-4-1,IEC 609 | 947-4-1 | | No. of poles | | | | 2 | | | Rated operational voltage Ue | | V | | 240V AC 50 Hz | | | Rated insulation voltage Ui | | V | 690V AC 50 Hz | | | | Rated operation current le AC-3 at 240V 50 Hz | | Α | 16 | 25 | 40 | | Rated thermal current lth | | Α | 32 | 45 | 50 | | Backup fuse rating | | Α | 40 | 63 | 63 | | Mechanical life | Cycles | million | | 5 | | | Electrical life at 240V, at rated AC-3 current | Cycles | million | | 1 | | | Operations per hour | Mechanical | cy/hr | | 7200 | | | operations per flour | AC-3 | cy/hr | 750 | | | | | Al cable/Al Lug | mm | | 1 x 16 | | | Main terminal capicity | Bare conductors | mm | 2 x 10 | | | | | Multi strand conductors | mm | | 2 x 6 | | | Service temperature | | °C | | -5°C to +55°C | | | Coil Circuit | | | | | | | Rated coil voltages | Standard | V | 220, 240 | | | | nated con voltages | Wide band coil | V | 160 - 220 | | | | | Pick up VA | VA | | 77 | | | Coil consumption | Hold on VA | VA | 13 | | | | | Hold on W | W | | 4 | | | | Pick up | | 55% | - 120% for Standard | d coil | | Coil operating band | i lok up | | 75% - 120% for Wide band coil | | nd coil | | | Drop Off | | | 30% - 50% | | | Overall dimension (H X W X D) | | mm^{3} | | 82.5 x 64 x 85.8 | | | Accessories | | | Тор | mounted 2 pole add | d-on | | Spares | | | Spare | coil and Spare con | tactkit | # **Overall Dimensions** ##
MU-2P Relay ### **Features** - Available in 1 frame size from 1 40 A - Direct mounting on MU-2P Contactors - Trip class 10A - > Ambient temperature compensated - Built-in single phasing protection | Type Designation | | Units | MU-2P | |-------------------------------------|-----------|-----------------|---------------------------------| | Poles | | | 2 | | Rated insulation voltage (Ui) | | V | 690 | | Rated impulse voltage (Uimp) | | kV | 8 | | | 24 V | Α | 6 | | Rated operational current for | 110 V | А | 5 | | AC-15 utilization category at 50 Hz | 220 V | А | 3 | | | 415 V | А | 2 | | Controls | | | Start and Off / Reset | | Built in contacts | | | 1NO (Start) and 1NC (Off/Reset) | | Trip class | | Α | 10 | | Ambient compensated | | | Yes | | Service temperature | | °C | -5°C to +55°C | | Short circuit protection device | | | Fuse link, 63 A type HF | | Mounting | | | Direct with MU-2P contactor | | Terminal capacity | Main | mm² | 10 | | (Unprepared conductor) | Auxiliary | mm² | 2.5 | | Overall dimensions (H x W x D) | | mm ² | 70 x 84 x 82 | # **Ordering information** ### **MU-2P Contactor** | Description | Catalogue Numbers | | | |-------------|-------------------|-------------|---------------| | Description | 220V Coil | 240V Coil | 160-220V Coil | | MU 16-2P | CS90117K000 | CS90117B000 | CS90117N000 | | MU 25-2P | CS90118K000 | CS90118B000 | CS90118N000 | | MU 40-2P | CS90119K000 | CS90119B000 | CS90119N000 | | | Тор а | dd on block | | | 2 NO | CS906920000 | | | | 1 NO + 1 NC | CS906930000 | | | | 2 NC | CS906940000 | | | | 1 NO | CS906950000 | | | | 1 NC | CS906960000 | | | | Spare coil | CS90793K000 | CS90793B000 | CS90793N000 | | | Spare contact kit | | | | MU 16-2P | CS902170000 | | | | MU 25-2P | CS902180000 | | | | MU 40-2P | CS902190000 | | | ## **MU-2P Relay** | Description | Cat. No. | |--------------------------|-------------| | MU-2P Relay, 1 - 1.6 A | CS9020700M0 | | MU-2P Relay, 1.5 - 2.5 A | CS9020700P0 | | MU-2P Relay, 2.5 - 4 A | CS9020700R0 | | MU-2P Relay, 4 - 6.5 A | CS9020700T0 | | MU-2P Relay, 6 - 10 A | CS9020700V0 | | MU-2P Relay, 9 - 14 A | CS9020700A0 | | MU-2P Relay, 11 - 18 A | CS9020700C0 | | MU-2P Relay, 13 - 22 A | CS9020700D0 | | MU-2P Relay, 16 - 26 A | CS9020700B0 | | MU-2P Relay, 20 - 32 A | CS9020700E0 | | MU-2P Relay, 26 - 40 A | CS9020700F0 | # EOLR - Electronic Over Load Relay # EOCR - Electronic Over Current Relay E&A's motor protection solutions are designed for enhanced protections of your motors and processes. With the introduction of REO EOLR and REO EOCR Electronic relays, E&A has a comprehensive motor protection solution starting from basic thermal overload relays to communicable intelligent motor management relays. These relays are designed using state-of-the-art technology to address all your motor management challenges. The aesthetics of these relays complement MO range of contactors ## **Salient Features** E&A introduces REO range of Electronic Overload Relays to complement the MO range of contactors. REO electronic overload relays are available in 2 version and in 2 frame size. REO range of Electronic Overload Relays provide protections against overload, single phasing, locked rotor and ground fault and are modular in design. - > Visual Status Indication-tripped/non-tripped From Front - > Phase Failure Sensitive - > Locked Rotor And Ground Fault Protections - Selectable Trip Class - **Features** - > Auto Manual / Reset Function - > Test Function-simulated The Tripping Of The Relay From The Front - Front Access To START And STOP/RESET Buttons - > Three Contacts: Alram, Trip And Start - > Isolated Alarm Circuit (N.O.) Contactors - Direct Mounting On MO Contactors #### Accessories - Separate mounting kit - > Reset cord | Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Terminal Capacity (Main) Terminal Capacity (Main) Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Tightening Torque 1.2 Nm Type of Screw M4" Auxiliary Circuit No. of Contacts 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating Phase Unbalance, Locked Rotor, Ground Fault Solid : 1 x 4240, 2 x 2.5150 mm² Phase Unbalance, Locked Rotor, Ground Fault Solid : 1 x 4240, 2 x 2.5150 mm² Finely Stranded : 1 x 4240 mm² Finely Stranded : 2 x 2.5 150 mm² INO - Alarm 1NO - Start 1NO - Trip Rated Impulse Withstand 6 kV AC-15 Rating | Туре | REO 1.1 | REO 1.1G | REO 4 | REO 4G | | |--|-------------------------------|--|-----------------------------------|--|---------------|--| | 18-90A | Main Circuit | | | | | | | Range | Conformance to Standards | | IS/IEC 60947-4-1, IEC 60 | 0947-4-1, EN 60947-4-1 | | | | 2.4-12A, 270-1350A 9-45A | | 0.15-0.75A | | 18-90A | | | | Mounting Direct / Separate Separate Direct Mounting on Contactors MO 9 - 45 Degree of Protection Industry Withstand Uimp Rated Insulation Voltage Ui Rated Insulation Voltage Withstand Uimp Rated Operational Voltage A15 V, 50 Hz / 480V, 60Hz Type of Operation Direct Acting, Trip Free Mechanism Trip Class (Selectable) Direct Acting, Trip Free Mechanism Trip Class (Selectable) 10A, 10E, 20E, 30E Temp Compensation (-20° to + 55°C) Protection Inbuilt Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 s q. mm. Finely Stranded - 2 x 2.5 to 6 s q. mm. Finely Stranded: 2 x 2.5 150 mm Finely Stranded: 1 x 4 240 mm² Finely Stranded: 2 x 2.5 150 mm² Type of Screw M4" Auxiliary Circuit Rated Insulation Voltage 1000V Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | Range | 0.6-3 | BA, | 72-360A, | | | | Mounting Direct / Separate Separate Direct Mounting on Contactors MO 9 - 45 - Degree of Protection IP 20 Rated Insulation Voltage Ui 1000 V Rated Impulse Withstand Uimp 6 kV Rated Operational Voltage 415 V, 50 Hz / 480V, 60Hz Type of Operation Direct Acting, Trip Free Mechanism Trip Class (Selectable) 10A, 10E, 20E, 30E Temp Compensation (-20° to +55°C) Protection Inbuilt Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Terminal Capacity (Main) Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded : 2 x 2.5 150 mm Solid : 1 x 4 240, 2 x 2.5 150 mm Tightening Torque 1.2 Nm Type of Screw M4" Auxiliary Circuit 1NO - Alarm No. of Contacts 1NO - Start 1NO - Start 1NC - Trip Rated Insulation Voltage 1000V Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | • | 2.4-12A, | | 270-1350A | | | | Direct Mounting on Contactors Degree of Protection Rated Insulation Voltage Ui Rated Impulse Withstand Uimp Rated Operational Voltage Type of Operation Trip Class (Selectable) Protection Inbuilt Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Terminal Capacity (Main) Direct Acting, Trip Free Mechanism Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Tightening Torque 1.2 Nm Type of Screw M4" Auxiliary Circuit No. of Contacts Tino - Alarm No. of Contacts Contac | | 9-45 | 5A | | | | | Degree of Protection IP 20 | - | Direct / S | Separate | Sepa | rate | | | Rated Insulation Voltage Ui Rated Impulse Withstand Uimp Rated Operational Voltage Type of Operation Trip Class (Selectable) Temp Compensation Overload, Single Phase, Phase Unbalance, Locked Rotor Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded : 2 x 2.5 150 mm² Finely Stranded : 2 x 2.5 150 mm² Finely Stranded : 2 x 2.5 150 mm² Finely Stranded : 1 x 4 240 mm² Finely Stranded Auxiliary Circuit Rated Insulation Voltage Rated Impulse Withstand Rated Impulse Withstand AC-15 Rating Pase Unbalance, Locked Rotor Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely
Stranded : 2 x 2.5 150 mm² Strand | Direct Mounting on Contactors | MO 9 | 9 - 45 | | - | | | Rated Impulse Withstand Uimp Rated Operational Voltage Type of Operation Trip Class (Selectable) Temp Compensation Protection Inbuilt Direct Acting, Trip Free Mechanism Trip Class (Selectable) Temp Compensation Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Tightening Torque Type of Screw Auxiliary Circuit No. of Contacts Rated Insulation Voltage Rated Impulse Withstand AC-15 Rating Direct Acting, Trip Free Mechanism 10A, 10E, 20E, 30E Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded : 1 x 4 240, 2 x 2.5 150 mm Finely Stranded : 1 x 4 240 mm² Finely Stranded : 2 x 2.5 150 mm² Solid : 1 x 4 240 mm² Finely Stranded : 2 x 2.5 150 mm² Finely Stranded : 1 x 4 240 mm² Finely Stranded : 2 x 2.5 150 mm² Type of Screw M4** Auxiliary Circuit 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating | Degree of Protection | | IP | 20 | | | | Rated Operational Voltage Type of Operation Trip Class (Selectable) Temp Compensation Overload, Single Phase, Phase Unbalance, Locked Rotor, Cround Fault Terminal Capacity (Main) Tightening Torque Type of Screw Maxiliary Circuit Rated Insulation Voltage Rated Impulse Withstand Type of Operation Direct Acting, Trip Free Mechanism 10A, 10E, 20E, 30E (-20° to+55°C) Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid -2 x 2.5 to 10 sq. mm. Finely Stranded -2 x 2.5 to 6 sq. mm. Solid: 1 x 4240, 2 x 2.5150 mm Finely Stranded: 1 x 4240 mm² Finely Stranded: 2 x 2.5 150 mm² Finely Stranded: 2 x 2.5 150 mm² Tightening Torque 1.2 Nm 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | Rated Insulation Voltage Ui | | 100 | 0 V | | | | Type of Operation Trip Class (Selectable) Temp Compensation Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Terminal Capacity (Main) Tightening Torque Type of Screw No. of Contacts Possed Unbalance (Main) Direct Acting, Trip Free Mechanism 10A, 10E, 20E, 30E 10A, 10E, 20E, 30E Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Solid : 1 x 4240, 2 x 2.5150 mm Finely Stranded : 1 x 4240 mm² Finely Stranded : 2 x 2.5 150 mm² Tightening Torque 1.2 Nm M4" Auxiliary Circuit 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating | Rated Impulse Withstand Uimp | | 6 I | ΚV | | | | Trip Class (Selectable) Temp Compensation (-20° to + 55°C) Protection Inbuilt Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Terminal Capacity (Main) Terminal Torque 1.2 Nm Type of Screw Auxiliary Circuit No. of Contacts Tiny Class (Selectable) Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Finely Stranded : 1 x 4 240 mm² Finely Stranded : 2 x 2.5 150 mm Finely Stranded : 2 x 2.5 150 mm² INO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating | Rated Operational Voltage | | 415 V, 50 Hz | /480V, 60Hz | | | | Temp Compensation (-20° to +55°C) Protection Inbuilt Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Terminal Capacity (Main) Terminal Torque 1.2 Nm Type of Screw M4" Auxiliary Circuit No. of Contacts To Contacts 1NO - Start 1NO - Start 1NO - Start 1NO - Start 1NO - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Overload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid : 1 x 4240, 2 x 2.5150 mm Finely Stranded : 1 x 4240 mm Finely Stranded : 1 x 4 240 4. | Type of Operation | Direct Acting, Trip Free Mechanism | | | | | | Protection Inbuilt Overload, Single Phase, Phase Unbalance, Locked Rotor Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Terminal Capacity (Main) Tightening Torque Type of Screw Auxiliary Circuit No. of Contacts Finely Stranded 100 verload, Single Phase, Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Finely Stranded : 1 x 4 240 mm² Finely Stranded : 2 x 2.5 150 mm Finely Stranded : 2 x 2.5 150 mm² Type of Screw M4" Auxiliary Circuit 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | Trip Class (Selectable) | 10A, 10E, 20E, 30E | | | | | | Protection Inbuilt Phase Unbalance, Locked Rotor, Ground Fault Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Finely Stranded - 2 x 2.5 to 6 sq. mm. Terminal Capacity (Main) Terminal Capacity (Main) Solid - 2 x 2.5 to 10 sq. mm. Finely Stranded : 1 x 4 240, 2 x 2.5 150 mm² Finely Stranded : 2 x 2.5 150 mm² Tightening Torque 1.2 Nm Type of Screw M4" Auxiliary Circuit 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | Temp Compensation | (-20° to +55°C) | | | | | | Terminal Capacity (Main) Finely Stranded - 2 x 2.5 to 6 sq. mm. Finely Stranded : 1 x 4 240 mm² Finely Stranded : 2 x 2.5 150 mm² Tightening Torque 1.2 Nm Type of Screw M4" Auxiliary Circuit 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand 6 kV AC-15 Rating Finely Stranded : 1 x 4 240 mm² | Protection Inbuilt | Phase Unbalance, | Phase Unbalance,
Locked Rotor, | Phase Unbalance, | Locked Rotor, | | | Type of Screw M4" Auxiliary Circuit 1NO - Alarm No. of Contacts 1NO - Start Rated Insulation Voltage 1000V Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | Terminal Capacity (Main) | | | Finely Stranded: 1 x 4 240 mm ² | | | | Auxiliary Circuit No. of Contacts 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage 1000V Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | Tightening Torque | 1.2 N | lm . | | | | | No. of Contacts 1NO - Alarm No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage 1000V Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | Type of Screw | M4" | | | | | | No. of Contacts 1NO - Start 1NC - Trip Rated Insulation Voltage Rated Impulse Withstand AC-15 Rating 1NO - Start 1NO - Start 2NO 2N | Auxiliary Circuit | | | | | | | Rated Insulation Voltage 1000V Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | | 1NO - Alarm | | | | | | Rated Insulation Voltage 1000V Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | No. of Contacts | 1NO - Start | | | | | | Rated Impulse Withstand 6 kV AC-15 Rating 2A at 415 V, 50 Hz | | 1NC - Trip | | | | | | AC-15 Rating 2A at 415 V, 50 Hz | Rated Insulation Voltage | 1000V | | | | | | | Rated Impulse Withstand | 6 kV | | | | | | | AC-15 Rating | 2A at 415 V, 50 Hz | | | | | | Thermal Current 5A | Thermal Current | 5A | | | | | | Terminal Capacity (Aux) Solid or finely stranded-2 x 2.5 sq. mm, | Terminal Capacity (Aux) | Solid or finely stranded-2 x 2.5 sq. mm, | | | | | | Tightening Torque 0.5 Nm | Tightening Torque | 0.5 N | lm | | | | | Type of Screw M3" | Type of Screw | M3' | , | | | | ## **REO Electronic Overload Relays** | Туре | Range (A) | Cat. Nos. | |----------|-----------|-------------| | | 0.15-0.75 | CS9041800J0 | | REO 1.1 | 0.6-3 | CS9041800Q0 | | NLO 1.1 | 2.4-12 | CS9041800L0 | | | 9-45 | CS9041800G0 | | | 0.15-0.75 | CS9042300J0 | | REO 1.1G | 0.6-3 | CS9042300Q0 | | | 2.4-12 | CS9042300L0 | | | 9-45 | CS9042300G0 | | | 18-90 | CS9041800U0 | | REO 4 | 72-360 | CS9041800R0 | | | 270-1350 | CS9041800C0 | | | 18-90 | CS9042300U0 | | REO 4G | 72-360 | CS9042300R0 | | | 270-1350 | CS9042300C0 | ## **Accessories for REO Relays** | Description | Cat. No. | |---------------------------------|-------------| | REO Relay Separate Mounting Kit | CS963350000 | | Reset cord | CS904250000 | #### **REO 1.1 / 1.1G** #### **REO 4 / 4G** # 158.5 128.5 Inlet Terminals 20 #### Assembly of separate mounting kit **Reset Cord Fitment** #### EOLR - Class 10A (7.2Ir @ 4s) Hot & Cold Curve #### EOLR - Class 10A (7.2Ir @ 4s) Thermal Memory Eg., For fault current of 2A, - 1. Trip time with cool down time of 1 min is 21 Sec - 2. Trip time with cool down time of 5 min is 52 Sec #### EOLR - Class 10E (7.2Ir @ 7s) Hot & Cold Curve #### EOLR - Class 10E (7.2Ir @ 7s) Thermal Memory For fault current of 2A, - 1. Trip time with cool down time of 1 min is 24 Sec - 2. Trip time with cool down time of 5 min is 73 Sec #### EOLR - Class 20E (7.2Ir @ 13s) Hot & Cold Curve #### EOLR - Class 20E (7.2Ir @ 13s) Thermal Memory Eg., For fault current of 2A, - 1. Trip time with cool down time of 1 min is 27 Sec - 2. Trip time with cool down time of 5 min is 94 Sec #### EOLR - Class 30E (7.2Ir @ 24s) Hot & Cold Curve #### EOLR - Class 30E (7.2Ir @ 24s) Thermal Memory Eg., For fault current of 2A, - 1. Trip time with cool down time of 1 min is 29 Sec - 2. Trip time with cool down time of 5 min is 112 Sec ### **Salient Features** REO range of Electronic Overcurrent Relays to complete the portfolio of motor protection relays. These relays complement MO range of contactors as they have similar aesthetics as MO range and can be directly mounted on the same. The relays trip based on definite time characteristics. That is, the relay has settable Start time and Trip time. - > Visual Status
Indication-tripped/non-tripped From Front - > Phase Failure Sensitive - Locked Rotor - Selectable start time and Trip Class - Features > Auto Manual / Reset Function - > Test Function-simulated The Tripping Of The Relay From The Front - > Front Access To START And STOP/RESET Buttons - > Three Contacts: Alram, Trip And Start - > Isolated Alarm Circuit (N.O.) Contactors - > Direct Mounting On MO Contactors #### Accessories - Separate mounting kit - > Reset cord # **Technical Details** | Туре | REO 1.1C | | | |-----------------------------------|--|--|--| | Main Circuit | | | | | Conformance to Standards | IS/IEC 60947-4-1, IEC 60947-4-1, EN 60947-4-1 | | | | | 0.15-0.75A | | | | Panga | 0.6-3.0A | | | | Range | 2.4-12A | | | | | 9-45A | | | | Mounting | Direct | | | | Direct Mounting on Contactors | MO 9 - 45 - | | | | Degree of Protection (from front) | IP 20 | | | | Rated Insulation Voltage Ui | 690 V | | | | Rated Impulse Withstand Uimp | 6 kV | | | | Rated Operational Voltage | 415 V, 50 Hz / 480V, 60Hz | | | | Type of Operation | Direct Acting, Trip Free Mechanism | | | | Selectable Start Time | 5s, 10s, 20s, 40s | | | | Selectable Trip Time | 2s, 4s, 8s, 16s | | | | Temperature Compensation | (-20° to +60°) C | | | | Protection In-built | Overcurrent, Single Phase, Phase unbalance, Locked rotor | | | | Terminal Capacity | 2 x 1 to 10Sq mm
Solid or Fine stranded | | | | Tightening torque | 2.5 Nm | | | | Type of Screw | M4 | | | | Short Circuit Protection | 63 A HN 000 Max | | | | Auxiliary Circuit | | | | | No of Contacts | 1NC - Trip, 1NO - Alarm, 1NO - Start | | | | Rated Insulation | 300V | | | | Rated Impulse Voltage | 4 kV | | | | AC - 15 Rating | 5A | | | | Short Circuit Protection | 6 A Fuse or MCB C type | | | | Terminal Capacity (Aux) | M3 (1.2Nm), 2 x 1 to 2.5 sq.mm. | | | | reminal duputity (rtux) | Solid or Fine stranded | | | | Aux Circuit | M3 (1.2Nm) | | | | Overall | | | | | Product Dimensions (HxWxD) | 70 x 45 x 78.5 | | | | | | | | ### **REO Electronic Overload Relays** | Description | Cat. Nos. | |-------------------------------|-------------| | REO 1.1C RELAY - 0.15 - 0.75A | CS9191100J0 | | REO 1.1C RELAY - 0.6 - 3A | CS9191100Q0 | | REO 1.1C RELAY - 2.4 - 12A | CS9191100L0 | | REO 1.1C RELAY - 9 - 45A | CS9191100G0 | #### **Accessories for REO Relays** | Description | Cat. No. | |---------------------------------|-------------| | REO Relay Separate Mounting Kit | CS963350000 | | Reset cord | CS904250000 | **REO 1.1C** #### Assembly of separate mounting kit ### **MM10** **Features** - > Digit LED display - Measurement of RYB, Zero Sequence current and Thermal capacity. - Separate LED's for indication of Motor operational, Trip & Thermal OL/ pre-alarm status. - Programmable thermal OL time constant right from 1 sec to 40 sec. - 2 nos. of C/O output contacts. 2nd output contact is programmable type. It can be configured for following conditions: - i) On any tripping - ii) On thermal tripping - iii) On thermal Warning Mm10 is a Compact Microprocessor based Motor Protection Relay for medium and large size Motors #### **Protections offered:** 37, 46, 49, 50/ 51, 51LR, 64 - > Thermal Overload With Warning - > Under Current - Unbalance - > Phase Loss - > Phase Sequence Reversal - > Earth Fault - > Prolong Starting, Locked Rotor - > Short Circuit - Relay output 'R1' works with fail-safe logic. For technical info on fail-safe logic, refer Appendix I - Programmable Binary input for remote operation.It can be configured for either of these operations: - i) Inhibit Motor Start - ii) Trip Reset - iii) Instant Tripping - Relay testing facility Test push button to check working of relay contacts. - Trip data recording Fault current or cause of last trip is displayed #### Wiring diagram External CT's - Protection class CT's [5 - 1000 Amps] with 5 Amp secondary # **Technical Details** | Functions | | MM10 | | |--|-----------------|--|--| | | ANSI nos. | 37, 46, 49, 50/51, 51LR, 64 | | | Protections | Description | Thermal overload with Warning, Short Circuit, Under
Current, Unbalance, Phase Loss, Phase Sequence
Reversal, Earth Fault, Prolong Starting, Locked Rotor | | | Metering | | IR, IY, IB, Io, Thermal Capacity | | | Digital Input + Output | | 1 DI + 2 CO Type DO | | | Monitoring | | Last 1 Trip | | | Auxiliary Supply | | 110 - 240V AC/DC | | | Current Input | | 5 A CT secondary | | | Binary Input Voltage Rating | | 12 V supplied internally | | | | Rating | 5 A, 250 VAC (cosΦ = 1) | | | Output Contact | Operating time | 15 ms Max | | | output oontact | Electrical life | 1,00,000 Operations at IR | | | | Mechanical life | 5 x 10 ⁶ Operations | | | Maximum Power Consumption | | 3 VA typical | | | Burden on CT | | 0.3 VA at Rated Current | | | Operating Temperature | | -5°C to 55°C | | | Degree of Protection | | IP52 | | | Weight Mounting Dim W x H x D in mm Panel Cut Out in mm | | 0.75 Kg | | | | | Panel Mounted | | | | | 96 x 96 x 110 | | | | | 90 x 90 | | #### **Dimensions** ### **iMMR** iMMR is an Intelligent Motor Control Centre (IMCC) Relay. It has been designed as a reliable building block for low voltage, contactor - controlled motor starter feeders in switchgear assemblies. The new iMMR series offers comprehensiveMotor Protection along with Control and Monitoring features. #### **iMMR Main Unit -** - An extremely compact motor protection relay with control and monitoring functions. - > 4 DI+3 DO available to take care of DOL, Star-Delta and RDOL starters - 4 LED's for easy troubleshooting and a RESET button is available on main unit. - > Inbuilt Modbus RTU, Profibus-DP, Modbus TCP/IP protocol. #### **Display Unit -** - An self-powered display module provides easy interface for monitoring and configuration of iMMR - The display unit is a detachable optional unit provided with iMMR for display of all metering, protection and fault data. - > 5 LED's and START/ STOP/ RESET buttons are available on Display unit. #### CT/CTVT Unit - iMMR comes with its own current module and current + Voltage module in two sizes and suitable for use from 0.3 Amp to 70 Amp (Max upto 360 kW) #### **User Friendly Options & Features** Highly scalable IO - 4 digital input and 3 changeover digital outputs are available in base unit. Universal Operating environment - Auxiliary supply range of 85 - 240 VAC/VDC Metering - Includes line, neutral & average current, line voltage & phase voltages, Power, Energy, Power Factor, Temperature and Thermal Capacity Monitoring - 100 events & 20 trip data recording with d a t e & time stamping. Recording of No. of start, Stop, Starting Curve, starting time is also available. Communication - iMMR can be connected to Plant C o n t r o l System (SCADA/DCS) through Modbus RTU, Profibus-DP, Modbus TCP/IP communication protocol Temperature Monitoring - Unit takes input from RTD or PTC. iMMR Suite - This software for local parameterization and monitoring of iMMR Relay. Users can create, save, read, and write the settings. #### **iMMR Suite** #### **Graphical Logic** # **Setting Range Chart for Protections** | Protection Function | Variable | Range | |-------------------------|---------------------|--------------------------| | | Alarm | 80 -100% of TM | | Thermal Overload | Thermal reset level | 30-95% of TM | | | Cool down time | 0.0 - 6000.0 Sec | | | Pick up | 15 - 100% IfIc | | Under Current | Alarm | 100-115% | | | Trip Delay | 0.100 - 6000 Sec | | | Pick up | 20 - 1000% Iflc | | NI Over Current | Alarm | 25-100% of Pick up | | | Trip Delay | 0.100 - 200 Sec | | | Pick up | 50 - 1000% IfIc | | Stalled Rotor | Alarm | 25-100% of Pick up | | otalica Hotol | Trip Delay | 0.100 - 6000.0 Sec | | | Pick up | 50 - 1000% Ifle | | | Alarm | 25-100% of Pick up | | DT Over current | Time During Start | 0.100 - 6000.0 Sec | | | | | | | Time During Run | 0.100 - 6000.0 Sec | | | Pick up | 150 - 1000% Iflc | | Locked Rotor | Alarm | 25-100% of Pickup | | | Trip Delay | 0.100 - 6000.0 Sec | | | Pick up | 100 - 1000% Iflc | | Short Circuit | Alarm | 25 - 100% of Pick up | | | Trip Delay | 0.050 - 10 Sec | | Current Phase Loss | Time Delay | 0.100 - 6000.0 Sec | | | Pick up | 10 - 500% Iflc | | | Alarm | 25-100% of Pick up | | Earth Fault | Trip Delay | 0.5 - 10 Sec | | (Internal) OrExternal) | Pick up | 0.030 - 40A | | | Alarm | 25-100% | | | Trip Delay | 0.100 - 6000 Sec | | | Pick up | 25 - 100% Vn | | Under Volatge | Alarm | 110% of Pick up | | onder voldige | Trip Delay | 0.100-6000 Sec | | | Pick up | 101 - 130% Vn | | Over Veletge | · · | | | Over Volatge | Alarm | 25 -100% | | | Trip Delay | 0.1000 - 600 © ec | | Current Phase Reversal | Time Delay | 0.100 - 6000.0 Sec | | | Pick up | 5 - 50% | | Voltage phase unbalance | Alarm | Equal to Pickup level | | | Trip Delay | 0.100 - 6000.0 | | Voltage phase reversal | Time Delay | 0.100 - 6000.0 Seconds | | Voltage phase loss | Time Delay | 0.100 - 6000.0 Sec | | | Pick up | 100 - 110% | | Over Frequency | Alarm | 99% of Pickup | | | Trip Delay | 0.100 - 6000.0 Sec | | | Pick up | 90 - 100% | | Under Frequency | Alarm | 101% of Pickup | | | Trip Delay | 0.100 - 6000.0 Sec | | | Pick up | 20 - 1000%of Pn | | Over Power | Alarm | 20 - 1000%of Pn | | | Trip Delay | 0.100 - 6000.0 Sec | | | Pick up | 20 - 1000% of Pn | | Under Power | Alarm | 20 - 1000%of Pn | | Onder Fower | | | | | Trip Delay | 0.100 -6000.0 Sec | | | Pick up | 0.4 - 1.00 | | Over PF | Alarm | 0.4 - 1.00 | | | Trip Delay | 0.100 - 6000.0 Sec | #### **Metering Specifications** | Monitoring | Specifications | | | |---------------------------|--|--|--| | Event & Trip Records | Stores last 20 trip records with the date and time
stamp | | | | | Stores last 100 Event records with the date and time stamp | | | | Hour Meter | Records and Stores last operational stops and total operational hours | | | | Start, Stop, Trip Counter | Records and stores number of starts, stops and trip of the motor | | | | Starting Curve | Records and stores starting characteristics of motor | | | | Starting Time | Records and stores the Start time of the motor | | | | Starting Peak current | Record the peak current during starting of the motor | | | | DI/DO Status | Displays real time status (high or low) of digital input and output of the relay | | | ### **iMMR System Overview** Note: Expansion module to be mounted on Right side of Main Unit. #### **Mounting Options** 1. Side-wise 2. Mounting above CT unit - 1. CT/CTVT unit should be mounted on the left side of the main unit. - 2. Main unit of iMMR can be placed on the CT/CTVT unit. #### **Product Specifications** | Current Measurement | | | | |-----------------------|--|--|--| | Range | Type 1: 0.3 - 3AAC Type 2: 2.5 - 25AAC | | | | Accuracy | +/- 1% in nominal range | | | | Voltage Measurement | | | | | Range | 60 - 690V AC | | | | Accuracy | +/- 1% in nominal range | | | | Frequency Measurement | | | | | Range | 45Hz - 65Hz | | | | Accuracy | +/- 1% in nominal range | | | | Power Measurement | | | | | Active Power Accuracy | +/- 2% in nominal range | | | | Power Factor Range | 0.4 - 1.0 | | | | Power factor Accuracy | +/- 0.03 | | | #### **Product Dimensions** | iMMR Module Name | Dimensions (H x W x D) in mm | |-------------------|------------------------------| | Main Module | 112 x 45 x 90 | | CT1, CT1VT module | 126 x 45 x 55 | | CT2, CT2VT module | 126 x 45 x 55 | | Display Module | 51 x 96 x 36 | | CT3, CT3VT module | 126 x 55 x 56 | #### **Metering Data** - > Current R, Y, B, EF, Unbalance - > Voltage, Frequency, KW, KVAr, KVA, PF, KWh, KVArh, KVAh - > Voltage and Current THD - > Thermal Memory, Motor status, Starting current and time - > Thermal time to trip, time to cool, Run hours #### **Standard Schematic** | DI/DO | TERMINAL NO. | FUNCTION/SOURCE | ACT.TYPE | APPLICATION | |-------|--------------|-----------------|----------|-------------------| | D01 | 0-C1 | TRIP | ACT.LOW | CONTACTOR CONTROL | | D02 | 02-C1 | ALARM | ACT.HIGH | ALARM INDICATION | | DI4 | IC-14 | TRIP RESET | ACT.HIGH | TRIP RESET | | DO3 | 03-C2 | TRIP | ACT HIGH | TRIP INDICATION | Note: DI - Potential Free Signal DO - Potential Free Contact | DI/DO | TERMINAL NO. | FUNCTION/SOURCE | ACT.HIGH | APPLICATION | |-------|--------------|-----------------|----------|--------------------| | DI1 | IC-I1 | L STRT > | ACT.HIGH | LOCAL START FWD | | DI2 | IC-I2 | L STOP | ACT.LOW | LOCAL STOP | | DI3 | IC-I3 | L STRT < | ACT.HIGH | LOCAL START REV | | DI4 | IC-I4 | TRIP RESET | ACT.HIGH | TRIP RESET | | D01 | 01-C1 | CONTACTOR O/P1 | ACT.HIGH | FW CONTACTOR COIL | | D02 | 02-C1 | CONTACTOR O/P2 | ACT.HIGH | BEV CONTACTOR COIL | Note: DI - Potential Free Signal DO - Potential Free Contact | DI/D0 | TERMINAL NO. | FUNCTION/SOURCE | ACT.TYPE | APPLICATION | |-------|--------------|-----------------|----------|------------------| | DI1 | IC-I1 | LSTRT> | ACT.HIGH | LOCAL START | | DI2 | IC-I2 | LSTOP | ACT.LOW | LOCAL STOP | | DI4 | IC-I4 | TRIP RESET | ACT.HIGH | TRIP RESET | | D01 | 01-C1 | CONTACTOR O/P1 | ACT.HIGH | CONTACTOR COIL | | D02 | 02-C1 | ALARM | ACT.HIGH | ALARM INDICATION | Note: DI - Potential Free Signal DO - Potential Free Contact | DI/D0 | TERMINAL NO. | FUNCTION/SOURCE | ACT.TYPE | APPLICATION | |-------|--------------|-----------------|----------|----------------------| | DI1 | IC-I1 | LSTRT> | ACT.HIGH | LOCAL START | | DI2 | IC-I2 | LSTOP | ACT.LOW | LOCAL STOP | | DI4 | IC-14 | TRIP RESET | ACT.HIGH | TRIP RESET | | D01 | 01-C1 | CONTACTOR O/P3 | ACT.HIGH | MAIN CONTACTOR COIL | | D02 | 02-C1 | CONTACTOR O/P2 | ACT.HIGH | DELTA CONTACTOR COIL | | D03 | 03-C2 | CONTACTOR O/P1 | ACT.HIGH | STAR CONTACTOR COIL | Note: DI - Potential Free Signal DO - Potential Free # **MOG Manual Motor Starter** MOG MMS integrates short circuit protection and overload relay function into a highly compact unit. The MMS can be used in numerous small and medium motor loads requiring high breaking capacity. Also, the compact size of the MMS enables a smaller installation area with less wiring space, thus reducing panel space. # **Unlock the Benefits of Double Protection** ### **Manual Motor Starter** #### **Functions** Moulded Case Circuit Breaker and Thermal Overload Relay functions integrated into a highly compact unit known as Manual Motor Starter. #### **Circuit Breaker Functions** - > Short circuit protection - Overcurrent protection - Line protection #### **Thermal Overload Relay Functions** - Overload protection - > Phase loss protection - Rated current adjustment - Ambient temperature compensation #### **MMS - Advantages** - Compact - High breaking capacity - > Short circuit protective coordination - > Reduction in wiring work - Ecological design standards # **Selecting the Appropriate Model** Adjustable thermal magnetic trip type MMS Instantaneous trip type MMS ## **Solution by using MMS** #### Typical Problem in the Conventional System and their Solution by using MMS #### **Short-Circuit Breaking Capacity** When numerous small and medium motor loads exist in a circuit requiring high breaking capacity, there is no high breaking capacity circuit breaker with a small rated current for a short circuit protection. The MMS can be used in 100kA short circuit current circuits for three-phase, 240V motors with rated capacity upto 15kW, and in 50kA short circuit current circuits for three phase, 415V motors with rated capacity up to 30kW. #### **Back-up Breaking System** When back-up MCCB is installed upstream to solve the problem described in "Short-circuit breaking protection" above, a short in one of the load circuits also trips the upstream breaker and stops the other operating circuits. Despite their compact size, the MMS provides highperformance short-circuit current breaking. eliminate the need for an upstream circuit breaker for back-up use. #### **Overload Protection** Motor Protection breakers cannot be adjusted to match the rated current of the motor being protected. Equipped with a wide range current adjustment dial (with maximum/minimum ratio of 1.4 to 1.6), the MMS easily adjusts to match the rated current of the motor, for optimum protection. #### **Control Panel Size** Considerable space is required to install a back-up circuit breaker or a combination starter consisting of a circuit breaker and a thermal overload relay. As a result, the panel size has to be increased. The compact size of the MMS, including overload relay functions, enables a smaller installation area with less wiring space, for a reduction in panel size. # Problem with Co-ordination of Contactors & Overload Relays with MCBs #### **Basics of Type 1 and Type 2 Co-ordination** As per the standard two types of co-ordination are permissible, Type "1" and "2". Type "1" co-ordination requires that under short-circuit conditions; the contactor or the starter shall cause no danger to persons or installation. The motor feeder may not be suitable for further service without repair and replacement of parts (Not remaining suitable is NOT a requirement and hence you may find separating in a different sentence could avoid possibility of misconception) Type "2" co-ordination requires that under short-circuit conditions; the contactor or the starter shall cause no danger to persons or installation and shall be suitable for further use. However contact welding is recognized. Also the time-current characteristics of the over load protection device should not change. This in other words means safety, low down time and continued protection. #### **Types of MCBs** The Classes of MCBs and the corresponding magnetic settings are tabulated below: | Curve Type | Magnetic setting (Multiples of In) | | | | | | | |------------|------------------------------------|--|--|--|--|--|--| | В | 3-5 times | | | | | | | | С | 5-10 times | | | | | | | | D | 10-20 times | | | | | | | C MCBs are popularly used for Motor protection applications #### Main problem while using an MCB for Motor protection Unlike a Fuse unit the MCB is a peak sensing device. While providing SC protection to the motor it is imperative that the MCB does not trip on the starting transients of the motor. This care has to be taken while selecting the rating of the MCB. These transients are usually of the tune of 12 times the full load current. Now suppose a C curve MCB is selected, in order to ensure it does not trip during the starting of the motor, 12 times the motor full load current should be lesser than 5 times the MCB's nominal current For e.g.: for a Motor having a full load current of 6 A, $12 \times 6 = 72A$ (starting current), a C curve MCB of rating = 72/5 = 14.5, i.e. 15A will have to be selected. Select a 6A AC3 rated contactor and a relay having a range of 4-6 ASuppose a fault occurs and the motor starts drawing a current of 60A, The MCB will not trip as 60A is lesser than $15 \times 5 = 75A$. As a result the overload relay will have to give a trip signal to the contactor to break this current. The IEC standard specifies the breaking capacity of a contactor to be 8 times its AC3 rating. 60 A is greater than $8 \times 6 = 48A$ as a result the contactor will get damaged. This problem can be rectified by de-rating the contactor. The second more serious problem can be described by considering the below case: Consider a 0.16 hp motor with a Full load current of 0.45A. The initial starting current will be around 5.4A. As in the earlier case a C curve MCB of 2A will have to be selected. With proper de-rating, an 18A Contactor is selected with a relay having rating of 0.3 - 0.5A. Now in this case, the crossover between the relay and the MCB will take place at $5 \times 2 =
10A$ which is 20 times the upper limit of the relay. This will cause permanent damage to the relay. There is no solution to this problem as de rating a relay is not possible. #### This is type 1 Co-ordination and not type 2 Suppose a D curve MCB is selected, then for the above case, a 72/10= 7.2 A i.e. an 8 A MCB will have to be selected. Now the MCB has to trip for currents between 10-20 times its nominal current. For the worst case in which the MCB trips at 20 times (i.e. 160A), for a fault current of 140A, the overload relay will have to give a tripping command to the MCB and there will be similar consequences as in the previous case. Thus in conclusion; while selecting an MCB for motor protection which may be a cost effective solution, one must be fully aware of the possible damages that might be caused to the contactor and overload relay. We recommend that if a customer wants fuseless protection for a feeder, MMS be used # **Technical Details** | Standards | Туре | | MOG - S1 | | MOG - H1 | | | |--|-------------------------------------|---|--|-------------------------------------|--|-------------------------------------|--| | Number of poles 3 3 Frame size available (upto A) 32 A 32 A Rated insulation voltage (U) 690 V 690 V Rated operational voltage (U+) 200-690V Rated insulation vol | Standards / A | Approval | IEC 60947 -1, - | 2, -4 -1 | IEC 60947 -1, -2 | 2, -4 -1 | | | Frame size available (upto A) 32 A 32 A 690 V | Handle type | | Rocker | | Rotary | | | | Rated insulation voltage (U) 690 V 690 V 200-690V 200-6 | Number of po | oles | 3 | | 3 | | | | Rated operational voltage (U-b) 200-690V 200-690V Rated impulse withstand voltage (U-w) 6 kV 6 kV Rated frequency 50/60Hz 50/60Hz Class of protection 10 10 Utilization category (IEC947 - 4 - 1/947 - 2) AC - 3 / Cat. A AC - 3/CatA Maximum motor capacity AC3 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) 100000 (32A-70000)/100000 (32A-70000)/100 | Frame size av | vailable (upto A) | 32 A | | 32 A | | | | Rated impulse withstand voltage (Ump) 6 kV | Rated insulat | ion voltage (Ui) | 690 V | | 690 V | | | | Rated frequency 50/60Hz 50/60Hz Class of protection 10 10 Utilization category (IEC947 - 4 - 1 / 947 - 2) AC - 3 / Cat. A AC-3/CatA Maximum motor capacity AC3 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) AC3 Electrical/Mechanical endurance 100000 (32A:70000)/100000 (32A:70000)/100000 (32A:70000), 1000000 10000000 (32A:70000), 1000000 (32A:70000), 1000000 (32A:70000), 10000000 (32A:70000), 10000000 (32A:70000), 1000000 10000000 (32A:70000), 1000000 (32A:70000), 1000000 (32A:70000), 10000000 (32A:70000), 1000000 (32A:70000), 1000000 (32A:70000), 10000000 (32A:70000), 1000000 (32A:70000), 10000000 (32A:70000), 1000 | Rated operati | ional voltage (U _e) | 200-690V | | 200-690V | | | | Class of protection 10 | Rated impulse | e withstand voltage (U _{imp}) | 6 kV | | 6 kV | | | | Utilization category (IEC947 - 4 - 1 / 947 - 2) AC - 3 / Cat. A AC-3/CatA Maximum motor capacity AC3 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) AC3 Electrical/Mechanical endurance 100000 (32A:70000)/100000 (32A:70000)/100000 (32A:70000), 100000 1000000 (32A:70000), 100000 (32A:70000), 100000 (32A:70000), 100000 (32A:70000), 100000 (32A:7 | Rated frequer | псу | 50/60Hz | | 50/60Hz | | | | Maximum motor capacity AC3 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) AC3 Electrical/Mechanical endurance 100000 (32A:70000)/100000 (32A:70000), (25 cycles/hour) 100000(32A:70000) / 100000 (32A:70000), (25 cycles/hour) Tripping device Thermal - Magnetic Thermal - Magnetic Ambient temperature compensation -5°C ~ +55°C -5°C ~ +55°C Storage Temperature -40°C to 65°C -40°C to 65°C Overload Yes (according to IEC60947 - 4 - 1) Yes (according to IEC60947 - 4 - 1) Phase loss protection Yes Yes Trip indicator Yes Yes Test trip function Yes Yes Instantaneous trip current 13 x le max. 13 x le max. Terminal type Screw terminal, M4 slotted Screw terminal, M4 slotted Wire size Solid/Stranded 1 - 10mm² x 1/18-8AWGx1 1 - 10mm² x 1/18-8AWGx1 Wire size Without / With end sleeve 1 - 6 mm² x 2/18-10AWGx2 1 - 6 mm² x 2/18-10AWGx2 Dimensions (mm) W x H x D 45 x 90 x 66 45 x 90 x 79 Atmosphere Atmosphere having no excess Vapour, Steam, | Class of prote | ection | 10 | | 10 | | | | AC3 Electrical/Mechanical endurance Tripping device Thermal - Magnetic Ma | Utilization categ | gory (IEC947 - 4 - 1 / 947 - 2) | AC - 3 / Cat. A | | AC-3/CatA | | | | Tripping device Thermal - Magnetic Thermal - Magnetic Thermal - Magnetic -5°C ~ + 55°C -5°C ~ + 55°C Storage Temperature -40°C to 65°C -40°C to 65°C Overload Yes (according to IEC60947 - 4 - 1) Yes (according to IEC60947 - 4 - 1) Phase loss protection Yes Yes Trip indicator Yes Yes Test trip function Yes Yes Instantaneous trip current 13 x le max. 13 x le max. Terminal type Screw terminal, M4 slotted Screw terminal, M4 slotted Wire size Without / With end sleeve 1 -6 mm² x 2/18-10 AWGx 2 1 -6 mm² x 2/18-10 AWGx 2 Product weight (Kg) 0.35 0.35 Dimensions (mm) W x H x D 45 x 90 x 66 Standard service condition Atmosphere Atmosphere Having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, | Maximum mo | otor capacity AC3 | 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) | | 7.5 kW (at 200 - | - 240 V), 15 kW (at 380 - 440 V) | | | Ambient temperature compensation 5°C~+55°C 5torage Temperature -40°C to 65°C -40°C to 65°C Overload Yes (according to IEC60947 - 4 - 1) Phase loss protection Yes Trip indicator Yes Test trip function Yes Instantaneous trip current 13 x le max. Terminal type Screw terminal, M4 slotted Terminal type Solid/Stranded 1-10mm² x 1/18-8AWGx 1 1-10mm² x 1/18-8AWGx 1 1-6mm² x 2/18-10AWGx 2 Product weight (Kg) 0.35 Dimensions (mm) W x H x D At y 90 x 66 Atmosphere Atmosphere Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, | AC3 Electrical/Mechanical endurance | | 100000 (32A:70000)/100000 (32A:70000),(25 cycles/hour) | | 100000(32A:70000) /100000 (32A:70000), (25 cycles /hou | | | | Storage Temperature -40°C to 65°C -40°C to 65°C Overload Yes (according to IEC60947 - 4 - 1) Yes (according to IEC60947 - 4 - 1) Phase loss protection Yes Yes Trip indicator Yes Yes Instantaneous trip current 13 x le max. 13 x le max. Terminal type Screw terminal, M4 slotted Screw terminal, M4 slotted Wire size Without / With end sleeve 1 -6 mm² x 2 / 18 - 10 AWGx 2 1 -6 mm² x 2 / 18 - 10 AWGx 2 Product weight (Kg) 0.35 0.35 Dimensions (mm) W x H x D 45 x 90 x 66 Relative humidity 45 ~ 85 % Rh Operation altitude Upto 2000 m Atmosphere Atmosphere Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, | Tripping device | | Thermal - Mag | netic | Thermal - Magr | netic | | | Overload Yes (according to IEC60947 - 4 - 1) Phase loss protection Yes Yes Yes Trip indicator Yes Yes Yes Yes Instantaneous trip current 13 x le max. Terminal type Screw terminal, M4 slotted Screw terminal, M4 slotted Screw terminal, M4 slotted Wire Solid/Stranded Without / With end sleeve 1 - 6 mm² x 2 / 18 - 10 AWGx 2 Product weight (Kg) 0.35 Dimensions (mm) W x H x D Relative humidity Atmosphere Atmosphere Atmosphere Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, Yes Yes Yes 1-6 mm² x 2 / 18 - 10 AVGx 13 x le max. 13 x le max. 13 x le max. 1-10mm² x 1/18-8 AWGx 1 1-10mm² x 1/18-8 AWGx 1 1-10mm² x 2/18-10AWGx 2 1-6 mm² x 2/18-10AWGx 2 45~85%Rh No dew formation or freezing due to rapid temperature change allowed Vipto
2000 m Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, | Ambient temp | perature compensation | -5°C~+55°C | | -5°C ~ + 55°C | | | | Phase loss protection Yes Yes Yes Trip indicator Yes Yes Yes Test trip function Yes Instantaneous trip current 13 x le max. 13 x le max. Terminal type Screw terminal, M4 slotted Screw terminal, M4 slotted Screw terminal, M4 slotted 1-10mm² x1/18-8AWGx1 1-10mm² x1/18-8AWGx1 1-6mm² x2/18-10AWGx2 Product weight (Kg) 0.35 Dimensions (mm) W x H x D Relative humidity 45~85%Rh Operation altitude Operation altitude Atmosphere Atmosphere Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, | Storage Tem | perature | -40°C to 65°C | | -40°C to 65°C | | | | Trip indicator Yes Yes Yes Test trip function Yes Yes Yes Instantaneous trip current 13 x le max. 13 x le max. Terminal type Screw terminal, M4 slotted Screw terminal, M4 slotted 1-10mm² x 1/18-8 AWGx 1 1-10mm² x 1/18-8 AWGx 1 1-6mm² x 2/18-10 AWGx 2 Product weight (Kg) 0.35 Dimensions (mm) W x H x D Relative humidity 45~85%Rh Operation altitude Operation altitude Ves Yes Yes Yes Yes Yes Yes Ye | Overload | | Yes (according | to IEC60947 - 4 - 1) | Yes (according | to IEC60947 - 4 - 1) | | | Test trip function Yes Instantaneous trip current 13 x le max. Terminal type Screw terminal, M4 slotted Screw terminal, M4 slotted Screw terminal, M4 slotted 1-10mm² x1/18-8AWGx1 1-10mm² x1/18-8AWGx1 Without / With end sleeve 1-6mm² x2/18-10AWGx2 Product weight (Kg) 0.35 Dimensions (mm) W x H x D 45 x 90 x 66 Atmosphere Atmosphere Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, 13 x le max. 1-10mm² x1/18-8AWGx1 1-10mm² x1/18-8AWGx1 1-6mm² x2/18-10AWGx2 1-6mm | Phase loss pr | rotection | Yes | | Yes | | | | Instantaneous trip current 13 x le max. Terminal type Screw terminal, M4 slotted Screw terminal, M4 slotted Screw terminal, M4 slotted 1-10mm² x 1/18-8AWGx 1 1-10mm² x 1/18-8AWGx 1 1-6mm² x 2/18-10AWGx 2 Product weight (Kg) 0.35 Dimensions (mm) W x H x D Relative humidity Operation altitude Operation altitude Atmosphere Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, | Trip indicator | | Yes | | Yes | | | | Terminal type Screw terminal, M4 slotted Wire size Without / With end sleeve Product weight (Kg) Dimensions (mm) W x H x D Relative humidity Screw terminal, M4 slotted 1-10mm² x 1/18-8AWGx 1 1-6mm² x 2/18-10AWGx 2 1-6mm² x 2/18-10AWGx 2 0.35 0.35 Dimensions (mm) W x H x D Relative humidity Operation altitude Operation altitude Operation altitude Atmosphere Atmosphere Atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, | Test trip func | tion | Yes | | Yes | | | | Wire size Solid/Stranded 1-10mm² x1/18-8AWGx1 1-10mm² x1/18-8AWGx1 Without / With end sleeve 1-6mm² x2/18-10AWGx2 1-6mm² x2/18-10AWGx2 Product weight (Kg) 0.35 0.35 Dimensions (mm) W x H x D 45 x 90 x 66 45x 90x 79 Standard service condition Atmosphere | Instantaneou | s trip current | 13 x le max. | | 13 x le max. | | | | Without / With end sleeve 1-6mm² x 2/18-10AWGx 2 1-6mm² x 2/18-10AWGx 2 Product weight (Kg) 0.35 0.35 Dimensions (mm) W x H x D 45 x 90 x 66 45x 90x 79 Relative humidity 45~85%Rh No dew formation or freezing due to rapid temperature change allowed service condition Atmosphere Atmosphere Atmosphere Atmosphere having no excess Vapour, Steam, Atmosphere Atmosphere Atmosphere Atmosphere having no excess Vapour, Steam, | Terminal type | | Screw termina | l, M4 slotted | Screw terminal, | M4 slotted | | | Product weight (Kg) Dimensions (mm) W x H x D Relative humidity Standard service condition Atmosphere William x 2/18-10 AWG x 2 1-6 mm 2/18- | Wire | Solid/Stranded | 1-10mm ² x1/ | 18-8AWGx1 | 1-10mm ² x 1/1 | 8-8AWGx1 | | | Dimensions (mm) W x H x D 45 x 90 x 66 Relative humidity 45~85%Rh No dew formation or freezing due to rapid temperature change allowed service condition Atmosphere Atmosphere Atmosphere 45 x 90 x 66 No dew formation or freezing due to rapid temperature change allowed and the rapid temperature change allowed atmosphere having no excess Vapour, Steam, Atmosphere having no excess Vapour, Steam, | size | Without / With end sleeve | 1-6 mm² x 2/1 | 8-10AWGx2 | 1-6 mm ² x 2/18 | -10AWGx2 | | | Relative humidity 45~85%Rh No dew formation or freezing due to rapid temperature change allowed service condition Relative humidity 45~85%Rh No dew formation or freezing due to rapid temperature change allowed to rapid temperature change allowed Atmosphere Atmosphere Atmosphere Atmosphere | Product weight (Kg) | | 0.35 | | 0.35 | | | | Standard service condition Operation altitude Upto 2000 m Operation altitude Upto 2000 m Operation altitude Upto 2000 m Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere | Dimensions (mm) W x H x D | | 45 x 90 x 66 | | 45x 90x 79 | | | | service condition Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere | · · | | 45~85%Rh | No dew formation or freezing due | | | | | Atmosphere Atmosphere naving no excess vapour, Steam, | | Operation altitude Unito 2000m | | to rapid temperature change allowed | Upto 2000 m | to rapid temperature change allowed | | | | condition | | | | | | | # **Technical Details** | MOG - H2 | MOG - H1M | MOG - H2M | | | |---|---|---|--|--| | IEC 60947 -1, -2, -4 -1 | IEC 60947 -1, -2, -4 -1 | IEC 60947 -1, -2, -4 -1 | | | | Rotary | Rotary | Rotary | | | | 3 | 3 | 3 | | | | 63 A | 32 A | 63 A | | | | 1000V | 690 V | 1000 V | | | | 200-690V | 200-690V | 200-690V | | | | 8 kV | 6 kV | 8 kV | | | | 50/60Hz | 50/60Hz | 50/60Hz | | | | 10 | 10 | 10 | | | | AC-3/Cat.A | AC-3/Cat.A | AC-3/Cat.A | | | | 15 kW (at 200 - 240 V), 30 kW (at 380 - 440 V) | 7.5 kW (at 200 - 240 V), 15 kW (at 380 - 440 V) | 15 kW (at 200 - 240 V), 30 kW (at 380 - 440 V) | | | | 25000 / 50000, (25 cycles / hour) | 100000(32A:70000)/100000(32A:70000),(25 cycles/hour | 25000 / 50000, (25 cycles / hour) | | | | Thermal - Magnetic | Magnetic | Magnetic | | | | -5°C~+55°C | -5°C~+55°C | -5°C~+55°C | | | | -40°C to 65°C | -40°C to 65°C | -40°C to 65°C | | | | Yes (according to IEC60947 - 4 - 1) | None | None | | | | Yes | Yes | Yes | | | | Yes | Yes | Yes | | | | Yes | Yes | Yes | | | | 13 x le max. | 13x le max. | 13x le max. | | | | Box terminal, M6 slotted | Screw terminal, M4 slotted | Box terminal, M6 slotted | | | | 1 - 25 mm ² x 1 / 18 - 4 AWG x 1 | 1 - mm ² 10 x 1 / 18 - 8 AWG x 1 | 1 - 25mm² x 1 / 18 - 4 AWG x 1 | | | | 1 - 16 mm² x 2 / 18 - 4 AWG x 2 | 1 - 6 mm²x 2 18 / - 10 AWG x 2 | 1-16mm²x2/18-4AWGx2 | | | | 0.78 | 0.37 | 0.78 | | | | 55x110x96 | 45 x 90 x 79 | 55 x 110x 96 | | | | 45 ~ 85% Rh No dew formation or freezing | 45~85%Rh No dew formation or freezing | 45~85%Rh No dew formation or freezing | | | | Upto 2000 m due to rapid temperature change allowed | Upto 2000 m due to rapid temperature change allowed | Upto 2000 m due to rapid temperature change allowed | | | | Atmosphere having no excess Vapour, Steam,
Dust,Corrosive gas, Salt, Flammable gas | Atmosphere having no excess Vapour, Steam,
Dust,Corrosive gas, Salt, Flammable gas | Atmosphere having no excess Vapour, Steam,
Dust,Corrosive gas, Salt, Flammable gas | | | # **Breaking Capacity at Different Voltages** #### **MOG - S1** | Rating | le: Min - Max
(A) | 240 V AC
230 V AC | | | 415 V AC
400 V AC | | 460 V AC
440 V AC | | 500 V AC | | 690 V AC
600 V AC | | |--------|----------------------|----------------------|----------|----------|----------------------|----------|----------------------|----------|----------|----------|----------------------|--| | | (7.1) | Icu (kA) | Ics (kA) | | | 0016 | 0.1 - 0.16 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0025 | 0.16 - 0.25 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0040 | 0.25 - 0.4 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0063 | 0.4 - 0.63 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0100 | 0.63 - 1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0160 | 1 - 1.6 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0250 | 1.6 - 2.5 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 3 | 2 | | | 0400 | 2.5 - 4 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 3 | 2 | | | 0630 | 4 - 6.3 | 100 | 100 | 100 | 100 | 50 | 38 | 50 | 38 | 3 | 2 | | | 1000 | 6.3 - 10 | 100 | 100 | 100 | 100 | 15 | 11 | 10 | 8 | 3 | 2 | | | 1300 | 9 - 13 | 100 | 100 | 50 | 38 | 10 | 8 | 6 | 5 | 3 | 2 | | | 1600 | 11 - 16 | 100 | 100 | 25 | 19 | 10 | 8 | 6 | 5 | 3 | 2 | | | 2000 | 14 - 20 | 50 | 38 | 25 | 19 | 10 | 8 | 6 | 5 | 3 | 2 | | | 2500 | 19 - 25 | 50 | 38 | 25 | 19 | 10 | 8 | 6 | 5 | 3 | 2 | | | 3200 | 24 - 32 | 50 | 38 | 25 | 19 | 10 | 8 | 6 | 5 | 3 | 2 | | #### MOG - H1 and MOG - H1M | Rating le: Min - Max (A) | | 240 V AC
230 V AC | | | 415 V AC
400 V AC | | 460 V AC
440 V AC | | 500 V AC | | 690 V AC
600 V AC | | |--------------------------|-------------|----------------------|----------|----------|----------------------|----------|----------------------|----------|----------|----------|----------------------|--| | | (A) | Icu (kA) | Ics (kA) | Icu (kA) | lcs (kA) | | | 0016 | 0.1 - 0.16 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0025 | 0.16 - 0.25 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0040 | 0.25 - 0.4 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0063 | 0.4 - 0.63 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0100 | 0.63 - 1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 0160 | 1 - 1.6 | 100 | 100 | 100 | 100 | 100 | 100
| 100 | 100 | 100 | 100 | | | 0250 | 1.6 - 2.5 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 8 | 6 | | | 0400 | 2.5 - 4 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 8 | 6 | | | 0630 | 4 - 6.3 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 6 | 5 | | | 1000 | 6.3 - 10 | 100 | 100 | 100 | 100 | 50 | 38 | 50 | 38 | 6 | 5 | | | 1300 | 9 - 13 | 100 | 100 | 100 | 100 | 50 | 38 | 42 | 32 | 6 | 5 | | | 1600 | 11 - 16 | 100 | 100 | 50 | 38 | 35 | 27 | 10 | 8 | 4 | 3 | | | 2000 | 14 - 20 | 100 | 100 | 50 | 38 | 35 | 27 | 10 | 8 | 4 | 3 | | | 2500 | 19 - 25 | 100 | 100 | 50 | 38 | 35 | 27 | 10 | 8 | 4 | 3 | | | 3200 | 24 - 32 | 100 | 100 | 50 | 38 | 35 | 27 | 10 | 8 | 4 | 3 | | #### MOG - H2 and MOG - H2M | Rating le: Min - Max (A) | | 240 V AC
230 V AC | | 415 V AC
400 V AC | | 460 V AC
440 V AC | | 500 V AC | | 690 V AC
600 V AC | | |--------------------------|---------|----------------------|----------|----------------------|----------|----------------------|----------|----------|----------|----------------------|----------| | | (4) | lcu (kA) | Ics (kA) | Icu (kA) | lcs (kA) | | 3200 | 24 - 32 | 100 | 100 | 50 | 38 | 35 | 27 | 10 | 8 | 5 | 4 | | 4000 | 28 - 40 | 100 | 100 | 50 | 38 | 35 | 27 | 10 | 8 | 5 | 4 | | 5000 | 35 - 50 | 100 | 100 | 50 | 38 | 35 | 27 | 10 | 8 | 5 | 4 | | 6300 | 45 - 63 | 100 | 100 | 50 | 38 | 35 | 27 | 10 | 8 | 5 | 4 | # **Ordering Information** ### **Thermal & Magnetic Trip - Rocker Type** | Frame size
(mm) | Rating
(A) | Motor Rating at
415 V, 50 Hz (kW) | Type
Designation | Thermal Release
Range (A) | Cat. Nos. | Breaking
Capacity | |--------------------|---------------|--------------------------------------|---------------------|------------------------------|-------------|----------------------| | | 0.16 | - | | 0.1 - 0.16 | ST418890000 | | | | 0.25 | - | | 0.16 - 0.25 | ST418900000 | | | | 0.4 | 0.09 | | 0.25 - 0.4 | ST418910000 | | | | 0.63 | 0.12 | | 0.4 - 0.63 | ST418920000 | | | | 1 | 0.25 | | 0.63 -1 | ST418930000 | 100 kA | | | 1.6 | 0.55 | | 1 - 1.6 | ST418940000 | TUU KA | | | 2.5 | 0.75 | | 1.6 - 2.5 | ST418950000 | | | 45 mm | 4 | 1.5 | MOG - S1 | 2.5 - 4 | ST418960000 | | | 45 111111 | 6.3 | 2.2 | MOG - ST | 4 - 6.3 | ST418970000 | | | | 10 | 4 | | 6.3 - 10 | ST418980000 | | | | 13 | 5.4 | | 9 - 13 | ST418990000 | 50 kA | | | 16 | 7.5 | | 11 - 16 | ST419000000 | | | | 20 | 9 | | 14 - 20 | ST419010000 | 05 1.4 | | | 25 | 12.5 | | 19 - 25 | ST419020000 | 25 kA | | | 32 | 15 | | 24 - 32 | ST419030000 | | ### **Thermal & Magnetic Trip - Rotary Type** | Frame size
(mm) | Rating
(A) | Motor Rating at
415 V, 50 Hz (kW) | Type
Designation | Thermal Release
Range (A) | Cat. Nos. | Breaking
Capacity | |--------------------|---------------|--------------------------------------|---------------------|------------------------------|-------------|----------------------| | | 0.16 | - | | 0.1 - 0.16 | ST419040000 | | | | 0.25 | - | | 0.16 - 0.25 | ST419050000 | | | | 0.4 | 0.09 | | 0.25 - 0.4 | ST419060000 | | | | 0.63 | 0.12 | | 0.4 - 0.63 | ST419070000 | | | 45 mm | 1 | 0.25 | | 0.63 - 1 | ST419080000 | | | | 1.6 | 0.55 | | 1 - 1.6 | ST419090000 | | | | 2.5 | 0.75 | | 1.6 - 2.5 | ST419100000 | | | | 4 | 1.5 | MOG - H1 | 2.5 - 4 | ST419110000 | 100 kA | | | 6.3 | 2.2 | | 4 - 6.3 | ST419120000 | | | | 10 | 4 | | 6.3 - 10 | ST419130000 | | | | 13 | 5.4 | | 9 - 13 | ST419140000 | | | | 16 | 7.5 | | 11 - 16 | ST419150000 | | | | 20 | 9 | | 14 - 20 | ST419160000 | | | | 25 | 12.5 | | 19 - 25 | ST419170000 | | | | 32 | 15 | | 24 - 32 | ST419180000 | | | | 32 | 15 | | 24 - 32 | ST419190000 | | | 55 mm | 40 | 20 | MOG - H2 | 28 - 40 | ST419200000 | 50 kA | | 33 HIIII | 50 | 25 | IVIUG - HZ | 35 - 50 | ST419210000 | 50 KA | | | 63 | 34 | | 45 - 63 | ST419220000 | | ### **Instantaneous Trip - Rotary Type** | Frame size (mm) | Rating
(A) | Motor Rating at
415 V, 50 Hz (kW) | Type
Designation | Instantaneous
Trip Current (A) | Cat. Nos. | Breaking
Capacity | | | |-----------------|---------------|--------------------------------------|---------------------|-----------------------------------|-------------|----------------------|--|--| | | 0.16 | - | | 2.1 | ST419230000 | | | | | | 0.25 | - | | 3.3 | ST419240000 | | | | | | 0.4 | 0.09 | | 5.2 | ST419250000 | | | | | | 0.63 | 0.12 | | 8.2 | ST419260000 | | | | | | 1 | 0.25 | | 13 | ST419270000 | | | | | | 1.6 | 0.55 | | 20.8 | ST419280000 | 100 kA | | | | | 2.5 | 0.75 | MOG -H1M | 32.5 | ST419290000 | TUU KA | | | | 45 mm | 4 | 1.5 | | 52 | ST419300000 | | | | | | 6.3 | 2.2 | | 81.9 | ST419310000 | | | | | | 10 | 4 | | 130 | ST419320000 | | | | | | 13 | 5.4 | | 169 | ST419330000 | | | | | | 16 | 7.5 | | 208 | ST419340000 | | | | | | 20 | 9 | | 260 | ST419350000 | | | | | | 25 | 12.5 | | 328 | ST419360000 | | | | | | 32 | 15 | | 416 | ST419370000 | | | | | | 32 | 15 | | 416 | ST419380000 | 50 kA | | | | 55 mm | 40 | 20 | MOG - H2M | 520 | ST419390000 | | | | | 55 111111 | 50 | 25 | IVIOG - MZIVI | 650 | ST419400000 | | | | | | 63 | 34 | | 819 | ST419410000 | | | | #### **Features** - All accessories can be used with MOG S1 (45 mm wide), MOG H1 (45 mm wide) and MOG H2 (55 mm wide) frames - Shunt trip and undervoltage trip devices are available in a wide range of operating voltages - > IP20 terminal cover prevents accidental contact to electrically charged parts ### Auxiliary Contact Blocks : MOG-AXF, MOG-AXL These blocks are linked to the ON/OFF operation of the MMS. Upto two contact blocks can be mounted to the right/left front and upto two contact blocks can be mounted to the left side. #### **Alarm Contact Blocks: MOG-TAF** This block operates when the MMS trips due to overload, phase-loss, or short-circuit. It is not linked to the ON/OFF operation of the MMS. Note: Operation can be checked with the test trip function. ### Auxiliary and Alarm Contact Blocks : MOG-ATL - This contact block combines auxiliary contact and alarm contact that operate in the event of an overload, phase loss, or short-circuit. Alarm contact is not linked to the ON/OFF operation of the MMS - An alarm is displayed in the contact block's indicator when the alarm contact operates Note: Operation can be checked with the test trip function. #### **Short-circuit Alarm Contact Block: MOG-SAL** - The contacts operate only when the MMS has tripped due to a short-circuit - When these contacts operate, the blue reset button extends out, and a trip indication is displayed - The power to the MMS can be turned ON after pressing the reset buttonNote: Operation can not be checked with the test trip function. Be sure to press the reset button before mounting to the MMS. #### **Shunt Trip Devices: MOG-ST** This device is used to remotely trip the MMS. #### Notes: - This device cannot be used together with an undervoltage trip device - > When the MMS trips with the shunt trip device, press the reset button before turning ON the power #### **Undervoltage Trip Devices: MOG-UV** This device automatically trips the MMS when the control circuit voltage drops below the specified value. #### Notes: - > This device cannot be used with a shunt trip device - When the MMS has been tripped by undervoltage trip device, press the reset button before turning ON the power #### **External Operating Handles : MOG-EH** - To operate the MMS without opening the panel door - > Equipped with an interlock mechanism that prevents someone from opening the panel door when the MMS is in the ON state - The shaft can be cut to match the distance between the MMS and the panel door - > Door interlock function - > OFF lock function Notes: Padlocks not included. - Release screw allows the door to be opened with the handle in the ON position - › IP54 enclosure 9mm External device Left side mounting Internal device Front mounting MMS mounting Front device Internal 18mm External device Right side mounting | Cat. Nos. | Description | Model Numbers | Position | Terminal M | arking | |-------------|--|-----------------|----------------------|--------------------|--------------------| | Cat. NOS. | Description | Model Nullibers | Position | NO | NC | | ST419420000 | Auxiliary Contact Front mtg. 1NO | MOG-AXF 1NO | F (Slot1 / Slot 2) | 13, 14 (23, 24) | | | ST419430000 | Auxiliary Contact Front mtg. 1NC | MOG-AXF 1NC | F (Slot1 / Slot 2) | | 11, 12 (21, 22) | | ST419440000 | Auxiliary Contact Left side mtg. 2NO | MOG-AXL 2NO | | "33, 34 (133, 134) | | | 31413440000 | Advinary Contact Left Side Hitg. 2110 | MUG-AXL ZNU | L | 43, 44 (143, 144)" | | | ST419450000 | Auxiliary Contact Left side mtg. 1NO + 1NC | MOG-AXL 1CO | L | 43, 44 (143, 144) | 31, 32 (131, 132) | | ST419460000 | Auxiliary Contact Left side mtg. 2NC | MOG-AXL 2NC | L | | "31, 32 (131, 132) | | 31413400000 | Advitary Contact Left Side Hitg. 2110 | WIOG AXE 2110 | - | | 41, 42 (141, 142)" | | ST419470000 | Trip Alarm Contact Front mtg. 1NO | MOG-TAF 1NO | F (Slot 2 only) | 27, 28 | | | ST419480000 | Trip Alarm Contact Front mtg. 1NC | MOG-TAF 1NC | F (Slot 2 only) | | 25, 26 | | ST419490000 | Auxiliary + Alarm Left side mtg. 2NO | MOG-ATL 2NO | L | "73, 74(Aux) | | | 31413430000 | Advillary 1 Alarm Left Side Intg. 2110 | WIGG ATE ZIVO | L | 77, 78"(Alarm) | | | ST419500000 | Short circuit alarm Left side mtg. 1NO + 1NC | MOG-SAL 1CO | L | 87, 88 | 85, 86 | | ST419510000 | Shunt trip 24 V DC | MOG-ST | | | | | ST419520000 | Shunt trip 110 V, 50 Hz | MOG-ST | D (and at | C1, | C2 | | ST429520000 | Shunt trip 230 V, 50 Hz | MOG-ST | R (one at
a time) | | | | ST419530000 | Under Voltage release, 110 V, 50 Hz | MOG-UV | , | | D2 | | ST419540000 | Under Voltage release, 415 V, 50 Hz | MOG-UV | | , | | F- Front Mounting Note: L - LHS Mounting R - RHS Mounting 1) On LHS any 2 accessories can be fitted (Alarm contact followed by Auxiliary contact) + MOG - ATL 2NO + MOG-AXL 1CO MOG-SAL 1CO + MOG-AXL 1CO 2) On RHS only 1 accessory can be fitted (Shunt trip release
or Undervoltage release) 3) Any 2 Front mounted accessories are possible at a time #### **Ratings of Accessories** | Accessory | type | Auxiliary contact block/front | Auxiliary contact block/side | Alarm contact block | Aux. and alarm contact block | Short-circuit alarm
contact block | | | | |-------------------|---------------|-------------------------------|------------------------------|---------------------|------------------------------|--------------------------------------|--|--|--| | Part numbe | r | MOG-AXF | MOG-AXL | MOG-TAF | MOG-ATL | MOG-SAL | | | | | Standard | | | IEC 60947-5-1 | | | | | | | | | 48 V AC AC-15 | 5 | 6 | 5 | 6 | 6 | | | | | | 125 V AC | 3 | 4 | 3 | 4 | 4 | | | | | | 230 V AC | 1.5 | 4 | 1.5 | 4 | 4 | | | | | Datad | 400 V AC | - | 2.2 | - | 2.2 | 2.2 | | | | | Rated operational | 500 V AC | - | 1.5 | - | 1.5 | 1.5 | | | | | current (A) | 690 V AC | - | 0.6 | - | 0.6 | 0.6 | | | | | | 48 V DC DC-13 | 1.38 | 5 | 1.38 | 5 | 5 | | | | | | 110 V DC | 0.55 | 1.3 | 0.55 | 1.3 | 1.3 | | | | | | 220 V DC | 0.27 | 0.5 | 0.27 | 0.5 | 0.5 | | | | | Min. voltage | and current | | | 17 V, 5 mA | | | | | | | Accessory type | | Shunt trip device
MOG-ST | Undervoltage device
MOG-UV | | | | |--------------------------------|----------------------|-----------------------------|-------------------------------|--|--|--| | Standard | | IEC 60947-1 | | | | | | Rated insulationvoltage (V AC) | | 69 | 90 | | | | | No. of operations | | 50 | 00 | | | | | Operating time (ms) | | 20 | | | | | | Power consumption | Inrush (VA/W) | 21/12 | | | | | | rower consumption | Sealed (VA/W) | 8/ | 1.2 | | | | | Voltage range | Tripping voltage (V) | 0.7 to 1.1Ue | 0.35 to 0.7Ue | | | | | voitage range | Closing voltage (V) | - | 0.85 to 1.1Ue | | | | | Time rating of coil (s) | | AC: Continuous
DC: 5 | AC: Continuous | | | | Note: Ue: Rated Voltage ⁺ Front mounted TAF to be fitted only in slot 2 + Front mounted auxiliary contact can be fitted in slot 1 / slot 2 | Accessory | Used with | Specification | Description | Cat. No. | |--|----------------|----------------------------|---|-------------| | Busbar | | | 2 MMS without accessory | ST419570000 | | Simple power supply for 2 to 5 MMSs without the need for | | 4 N | 3 MMS without accessory | ST419580000 | | wiring | | | 4 MMS without accessory | ST419590000 | | | | | 5 MMS without accessory | ST419600000 | | | MOG S1/H1/H1M | 64A max | 2 MMS with one accessory 9 mm | ST419610000 | | | | Pin connection | 3 MMS with one accessory 9 mm | ST419620000 | | Line in the last of o | | | 4 MMS with one accessory 9 mm | ST419630000 | | | | | 5 MMS with one accessory 9 mm | ST419640000 | | مر المالات المالات | | | 2 MMS without accessory | ST419660000 | | | | | 3 MMS without accessory | ST419670000 | | | | | ST419680000 | | | | MOG H2/H2M | Rated current: | 2 MMS with one accessory 9 mm | ST419690000 | | | WOO 112/1121VI | 126A max
Pin connection | 3 MMS with one accessory 9 mm | ST419700000 | | | | | 4 MMS with one accessory 9 mm | ST419710000 | | | | | 2 MMS with two accessories 9mm or one accessory 18 mm | ST419720000 | | | | | 4 MMS with two accessories 9mm or one accessory 18 mm | ST419730000 | | 3 Phase Feed in terminal
Used to connect the wire for
the power supply circuit | MOG S1/H1/H1M | Rated current: 64A | Feed in terminal for 45 mm width | ST419650000 | | 9 9 9 | MOG H2/H2M | Rated current: 126A | Feed in terminal for 55 mm width | ST419740000 | | Busbar Safety cover Prevents contact with charged parts when part of the busbar is not connected to MMS. | MOG S1/H1/H1M | For pin connection | Bus bar safety cover 45 mm width | ST419750000 | | [h]> | MOG H2/H2M | For pin connection | Bus bar safety cover 55 mm width | ST419760000 | Three Phase Feed in terminal Type MOG - S1 (0.16A - 32A) Type MOG - H1 (0.16A - 32A) Type MOG - H2 (32A - 63A) ### Type MOG - H1M (0.16A - 32A) #### Type MOG - H2M (32A - 63A) Type MOG - S1 (0.16A - 32A) Type MOG - H1 & MOG - H1M (0.16A - 32A) Type MOG - H2 & MOG - H2M (32A - 63A) **Trip Alarm Contact Front 1 NO** #### S/C Alarm Left 1 NO + 1 NC #### **External Operating Handle (Applicable for Frame 1 & 2)** #### **Aux. Contact Front 1 NO** #### Aux. Alarm Left 2 NO #### **Aux. Contact Left 2 NO** MOG - AXL 2 NO MOG - AXL 1 CO MOG - AXL 2 NC #### **Shunt Trip and under Voltage Release** MOG - ST & MOG - UV #### **MMS Busbar Accessories** #### 3 Phase Feed in Terminals (Frame 1) 52.5 ST419650000 #### **3 Phase Feed in Terminals** (Frame 2) ST419740000 #### **MMS Busbar Accessories** #### For MOG-S1, MOG-H1/H1M (Frame 1) #### Without external accessory ST419570000 : 80 mm ST419580000 : 125 mm ST419590000 : 170 mm ST419600000 : 215 mm #### With 1 external accessory ST419610000 : 89 mm ST419620000 : 143 mm ST419630000 : 197 mm ST419640000 : 251 mm #### For MOG-H2/H2M (Frame 2) #### Without external accessory ST419660000 : 98 mm ST419670000 : 152 mm ST419680000 : 205 mm #### With one external accessory ST419690000 : 107 mm ST419700000 : 170 mm ST419710000 : 232 mm With 2 external accessory, 9 mm wide With 1 external accessory, 18 mm wide ST419720000 : 116 mm ST419730000 : 260 mm # Compact, Reliable & Complete Solution ### **Salient Features** #### **Features & Benefits** #### **Single Phasing Protection** MN relays having phase failure sensitive tripping mechanism provides reliable protection against single phasing & overload conditions. MN relays are compensated for variation in ambient temperature from -5 °C to 55 °C. #### IP54 degree of protection Corrosion resistant powder coated enclosure with IP 54 degree of protection makes MN starters most suitable for chemical factories, polluted industrial and dustyagricultural environments. #### **Terminal Block** MN Star-Delta starters are provided with terminal block with proper terminal marking for ease of wiring. Terminal block can accommodate both aluminum & copper cables. #### **Base Plate Mounting** MN Star-Delta starters are mounted on base plate that can absorb vibrations & it makes MN starters maintenance friendly. #### **Electronic Timer** MN Fully Automatic Star-Delta starters are provided with electronic timer for high repeat accuracy. #### **Trip Test Facility** This facility enables the user to manually check the operation of the trip mechanism. Move the trip slide in the direction shown on the relay. The relay trips with an audible 'Click' sound, indicating that the trip mechanism is in good working order. #### Off / Reset Push-Button The relay will trip in case of overloads or single phasing conditions. Simultaneously 'Alarm Contact' (97-98) will close. The motor cannot be restarted until the relay has been reset. To reset the relay, allow the bimetals to cool down sufficiently & push this button to reset the trip contact (95-96).If the relay is in reset condition, pressing this pushbutton will open 'Trip Contact'. But now the alarm contact will not close. This indicates healthy operation of the relay mechanism. The trip contact will again close when this button is released. #### **Auto-Manual Reset Switch** There are two modes of reset available: Manual and Auto. By default the relay is in the Manual reset mode and can be converted to Auto reset mode by moving the switch to Auto position marked on the label # **Technical Deatails** #### **Chart for MN DOL starters** | Туре | | Maximum Motor Rating Approx. Full Relay at 415V, 3 Ø, 50Hz Current In Range Relay | | Range | Range | Range | Contactor | Recommended
Back-up HRC Fuse | | Switch
Disconnector | |--------------|------|---|-----|-----------|--------|------------|-----------|---------------------------------|-----------|------------------------| | | HP | kW | (A) | (A) | | | Туре | Rating (A) | Fuse Unit | | | | 2 | 1.5 | 3.5 | 3 - 5 | | MANY 10 | HF | 16 | FN 32 | | |
 2.5 | 1.8 | 4.8 | 3 - 5 | | | HF | 16 | FN 32 | | | | 3 | 2.2 | 5 | 4.5 - 7.5 | | | HF | 16 | FN 32 | | | MN 16 | 4 | 3 | 6.2 | 4.5 - 7.5 | MN 2 | | HF | 20 | FN 32 | | | DOL | 5 | 3.7 | 7.5 | 6 - 10 | IVIN Z | MNX 18 | HF | 20 | FN 32 | | | | 6 | 4.5 | 9 | 6 - 10 | | | HF | 25 | FN 32 | | | | 7.5 | 5.5 | 11 | 9 - 15 | | | HF | 32 | FN 32 | | | | 10 | 7.5 | 14 | 9 - 15 | | | HF | 32 | FN 32 | | | | 7.5 | 5.5 | 11 | 9 - 15 | MN 2 | MNX 25 | HF | 32 | FN 32 | | | MN 25 | 10 | 7.5 | 14 | 9 - 15 | | | HF | 32 | FN 32 | | | DOL | 12.5 | 9.3 | 18 | 14 - 23 | | | HF | 50 | FN 63 | | | | 15 | 11 | 21 | 14 - 23 | | | HF | 63 | FN 63 | | | | 15 | 11 | 21 | 20 - 33 | | MNX 32 | HF | 63 | FN 63 | | | MN 32
DOL | 17.5 | 13 | 24 | 20 - 33 | MN 2 | | HF | 63 | FN 63 | | | | 20 | 15 | 28 | 20 - 33 | | | HN/100 | 63 | FN 100 | | | MN 45 | 25 | 18.5 | 35 | 30 - 50 | MN 5 | MNX 50 | HN/100 | 80 | FN 100 | | | DOL | 30 | 22 | 40 | 30 - 50 | C MIM | IVIIVA 50 | HN/100 | 80 | FN 100 | | | | 30 | 22 | 40 | 30 - 50 | | | HN/100 | 80 | FN 100 | | | MN 65 | 35 | 26 | 47 | 30 - 50 | MN 5 | 5 MNX 70 | HN/100 | 100 | FN 100 | | | DOL | 40 | 30 | 55 | 45 - 75 | C MIM | IVIINA 7 U | HN/100 | 100 | FN 100 | | | | 40 | 30 | 60 | 45 - 75 | | | HN/100 | 100 | FN 100 | | Selection Chart for MN DOL Starters #### **Chart for MN Star-Delta starters** | Maximum Motor Ratin
Type at 415V, 3 Ø, 50Hz | | at 415V, 3 Ø, 50Hz Load Current In | Relay
Range Relay | Contactor | Recommended
Back-up HRC Fuse | | Switch
Disconnector | | | | | | |--|------|------------------------------------|----------------------|--------------------|---------------------------------|----------|------------------------|---------|------------|-----------|-------|-----| | | HP | kW | (A) | I _n /√3 | (A) | | | Туре | Rating (A) | Fuse Unit | | | | | 10 | 7.5 | 14 | 8.08 | 6 - 10 | | | HF | 20 | FN32 | | | | MN 16 | 12.5 | 9.3 | 18 | 10.4 | 9 - 15 | NANI O | MNX 18 | HF | 32 | FN32 | | | | FASD | 15 | 11 | 21 | 12.1 | 9 - 15 | MN 2 | IVINA 16 | HF | 32 | FN32 | | | | | 17 | 13 | 25 | 24.4 | 9 - 15 | | | HF | 32 | FN32 | | | | MN 25 | 20 | 15 | 28 | 16.2 | 14 - 23 | MN 2 | MNX 25 | HF | 40 | FN63 | | | | IVIIV 25 | 25 | 18.5 | 35 | 20.2 | 14 - 23 | IVIIN Z | IVINA 25 | HF | 50 | FN63 | | | | MN 32 | 35 | 22.5 | 40 | 23 | 20 - 33 | 14110 | MNX 32 | HF | 63 | FN63 | | | | FASD | 40 | 30 | 47 | 27 | 20 - 33 | MN 2 | IVINA 32 | HN/00 | 63 | FN100 | | | | | 40 | 30 | 55 | 31.8 | 30 - 50 | | IN 5 MNX 50 | HN/00 | 63 | FN100 | | | | MN 45
FASD | 45 | 33.5 | 60 | 34.6 | 30 - 50 | MN 5 | | HN/00 | 80 | FN100 | | | | | 50 | 37 | 66 | 38.2 | 30 - 50 | | | HN/00 | 80 | FN100 | | | | | 60 | 45 | 80 | 46.2 | 45 - 75 | | | HN/00 | 100 | FN100 | | | | MN 65 | 65 | 48.5 | 87 | 50 | 45 - 75 | MN 5 | MNX 70 | HN/00 | 100 | FN100 | | | | FASD | 70 | 52 | 94 | 54.5 | 45 - 75 | C MINI | IVINA 70 | HN/00 | 125 | FN125 | | | | | 75 | 55 | 100 | 57.5 | 45 - 75 | | | HN/00 | 125 | FN125 | | | | MN 80
FASD | 90 | 67.5 | 120 | 69.2 | 45 - 75 | MN 5 | MNX 80 | HN/0 | 160 | FN 200 | | | | MN 110 | 100 | 75 | 135 | 77.9 | 66 - 110 | MN 5 | MANIV 110 | HN/0 | 160 | FN200 | | | | FASD | 150 | 110 | 165 | 95 | 66 - 110 | | IVIIVI 5 | C NINI | C VIIVI | MNX 110 | HN/0 | 200 | | MN 140 | 150 | 110 | 200 | 115 | 90 - 150 | NANI 101 | | HN/1 | 250 | FN250 | | | | FASD | 180 | 132 | 230 | 132.8 | 90 - 150 | MN 12L | MN 12L | MNX 140 | HN/1 | 250 | FN250 | | ## **Technical Deatails** #### **Ordering Information - MN DOL Starter*** Example: MN 16 DOL - 240 V with relay range 9 - 15 A Ordering Information - SS94015BOBO | Starter Type | Version | MN 16 | MN 25 | MN 32 | MN 45 | MN 65 | |---------------------------------|-------------|---------|---------|---------|---------|---------| | Cat. No. | | SS94351 | SS94352 | SS94353 | SS94017 | SS94018 | | Rated control voltage (Us) V AC | Relay Range | | | | | | | | 2.0 - 3.3 | DOQO | - | _ | - | _ | | | 3.0 - 5.0 | _ | _ | _ | _ | _ | | | 4.5 - 7.5 | _ | _ | _ | _ | - | | | 6.0 - 10 | _ | _ | _ | _ | _ | | 240 | 9.0 - 15 | - | BOBO | - | - | - | | | 14 - 23 | _ | BODO | BOEO | _ | _ | | | 20 - 33 | - | - | - | - | - | | | 30 - 50 | _ | _ | _ | _ | _ | | | 45 - 75 | - | - | - | - | - | | | 3.0 - 5.0 | COSO | _ | _ | _ | _ | | | 4.5 - 7.5 | COUO | _ | _ | _ | - | | | 6.0 - 10 | COVO | _ | _ | _ | _ | | 360 | 9.0 - 15 | COBO | - | - | - | - | | 300 | 14 - 23 | _ | COBO | _ | _ | _ | | | 20 - 33 | - | CODO | COEO | - | - | | | 30 - 50 | _ | _ | _ | COGO | _ | | | 45 - 75 | - | - | - | - | COJO | | | 3.0 - 5.0 | DOSO | _ | _ | _ | _ | | | 4.5 - 7.5 | DOUO | - | - | - | - | | | 6.0 - 10 | DOVO | _ | _ | _ | _ | | 415 | 9.0 - 15 | DOBO | _ | _ | - | - | | 410 | 14 - 23 | _ | DOB0 | DODO | _ | _ | | | 20 - 33 | - | DODO | DOEO | - | - | | | 30 - 50 | _ | _ | _ | DOGO | DOGO | | | 45 - 75 | - | - | - | - | DOJO | #### Ordering Information - MN Star- Delta Starter* Example: MN 16 SASD - 360 V with relay range 9 - 15 A Ordering Information - SS94019COBO | Starter Type | Version | MN 16 | MN 25 | MN 32 | MN 45 | MN 65 | MN 80 | MN 110 | MN 140 | |---------------------------------|----------------|---------|---------|---------|---------|---------|---------|---------|---------| | Cat. No. | FASD | SS94362 | SS94364 | SS94366 | SS94021 | SS94022 | SS94705 | SS94706 | SS94707 | | Rated control voltage (Us) V AC | Relay
Range | | | | | | | | | | | 6.0 - 10 | COVO | _ | - | _ | _ | _ | _ | _ | | | 9.0 - 15 | COBO | _ | _ | _ | _ | _ | _ | _ | | | 14 - 23 | _ | CODO | DODO | _ | - | _ | _ | - | | | 20 - 33 | _ | _ | COEO | _ | _ | _ | _ | _ | | 360 | 30 - 50 | - | - | - | _ | - | - | - | _ | | | 45 - 75 | _ | _ | _ | _ | _ | _ | _ | _ | | | 66 - 110 | _ | _ | _ | _ | _ | _ | _ | _ | | | 90 - 150 | _ | _ | _ | _ | _ | _ | _ | _ | | | 6.0 - 10 | DOVO | _ | _ | _ | _ | _ | _ | _ | | | 9.0 - 15 | DOBO | _ | _ | _ | _ | _ | _ | _ | | | 14 - 23 | _ | DODO | _ | _ | _ | _ | _ | _ | | | 20 - 33 | _ | _ | DOEO | _ | _ | _ | _ | _ | | 415 | 30 - 50 | _ | _ | _ | DOGO | _ | _ | _ | _ | | | 45 - 75 | _ | _ | _ | _ | DOJO | DOJO | _ | _ | | | 66 - 110 | _ | _ | _ | _ | _ | _ | DOKO | _ | | | 90 - 150 | _ | _ | _ | _ | _ | _ | _ | DOMO | ^{*} Note: These are the standard combinations of relay and contactor. Any other combinations can be supplied on request. # **Glossary** | Altitude | The height (above the sea level) of the site where the equipment is located. | |-------------------------|--| | Ambient
Temperature | Air temperature surrounding the equipment. | | Auxiliary
Circuit | All the conducting parts of a contactor, intended to be included in a circuit different from the main circuit and the control circuit of the contactor e.g. signalization, interlocking circuits etc. | | Control Circuit | Circuit used for the closing operation and opening operation of the contactor. | | Main Circuit | Main contact system. | | Limits of operation | Minimum and maximum coil operating limits, which are expressed as a percentage of the rated control circuit voltage. | | Electrical
Endurance | Number of on-load operating cycles (i.e. with current on the main contacts) contactor can achieve. It might be different for different utilization categories. | | Mechanical
Endurance | Number of off-load operating cycles (i.e. without current on the main contacts) a contactor can achieve. | | Inching | Energizing a motor once or repeatedly for short periods to obtain small movements of the driven mechanism. | | Plugging | Plugging is defined as a system of braking, in which the motor connections are reversed so that the motor develops a counter torque, which acts as a retarding force. Plugging controls provide for the rapid stop and quick reversal of motor rotation. | | Rated breaking capacity | The RMS value of current that contactor can break without damage to the contactor. | | Rated making capacity | The peak value of current that contactor can make without damage to the contactor. | # **Glossary** | Rated control circuit voltage Uc | Control voltage value for which the coil of the contactor is designed. | |--|---| | Rated insulation | The highest energing voltage that will not eques a disloctric etrangth failure. It is | | voltage Ui | The highest operating voltage that will not cause a dielectric strength failure. It is used as a parameter for dielectric strength tests and for the creepage distance. | | | | | Rated impulse with stand voltage Uimp | It is the maximum voltage impulse which the product can withstand without failing. | | | | | Rated operating voltage Ue | Voltage value to which utilization characteristics of the contactor are referred, i.e. phase to phase voltage in 3 phase circuits. | | | | | Rated operating current le | Current value stated by the manufacturer and taking into account the rated operating voltage Ue, the rated frequency, the rated duty, the utilization category, the electrical contact life and the type of the protective enclosure. | | | | | Conventional
thermal
current Ith | Value of current the contactor can withstand with poles in closed position, in free air for an eight hour duty, without the temperature rise of its various parts exceeding the imits specified by the standards. | | | | | Permissible Short
Time ratings | Value of current which the contactor can withstand in closed position for a short time period and within specified conditions. | | 0 711 | | | Switching
frequency | Number of
operating cycles per hour. | | | | | Pick Up VA | Load of the coil in VA at the moment when the supply is given to the coil, till the time the contacts of the contactor close. | | | | | Hold On VA | It is the continuous load of the coil in VA, after the contacts are closed. | | Closing time | Time between energization of the coil until the moment the contacts of the first current | | Closing time | path to be closed actually close. | | Opening time | Time from the beginning of state causing breaking until the moment when the contacts of the last current path to be opened are open. | | | | | Mounting Positions | Stated by the manufacturer. Please note restrictions when applicable. | # **Electrical Standard Products (ESP) Offices** #### **HEAD OFFICE** Lauritz Knudsen Electrical & Automation, A/600, Shil-Mahape Road, TTC Industrial Area, MIDC Thane, Navi Mumbai, 400 710, Maharashtra. Tel: 022-6722 6300 | Fax: 022-6705 1112 | e-mail: CIC@LK-EA.com #### **BRANCH OFFICES** Lauritz Knudsen Electrical & Automation C-201, The First Commercial Complex, B/S Keshavbaug Party Plot, Vastrapur, Ahmedabad - 380 015 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Wework Central, #36 Infantry Road, Bengaluru - 560 001 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Under O Launchpad, 4th Floor, Unit-434, Esplanade 1, Rasulgarh, Bhubaneswar - 751 010 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation, 801 Word Level-8, No. 28, SIDCO Industrial Estate, Guindy, **Chennai - 600 032** Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Playworkz Coworking Space 43 & 44, 3rd Cross, Bharathy Colony, Peelamedu, Coimbatore - 641 004 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation 3rd Floor, 1&2 Vijay Park, Main Chakrata Road, Opp. Anandam, Near Ballupur chowk, **Dehradun - 248 001** Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Ground Floor, B-27, Biplab Rashbihari Sarani, Sector 2A, Bidhan Nagar, **Durgapur - 713 212** Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation 6th Floor, Exotica Greens, A Block, 191, R G Baruah Road, Guwahati Central, **Guwahati - 781 005** Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Shri Daneshwari, 1st Floor Plot No. 17, 2nd Cross, Near Old Income Tax Office Road, Vidyanagar, **Hubballi - 580 021** Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation AWFIS Space Solutions, Prestige Phoenix, 4th floor, 1405, Umanagar, Begumpet, Hyderabad - 500 016 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Workie, 214 - 2nd Floor, Apollo Premier, PU-4, Scheme No. 54, Vijay Nagar Square, Indore - 452 010 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Office No. 430, 4th Floor, Jaipur Electronic Market, Riddhi Siddhi, Gopalpura Bypass, Jaipur - 302 018 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation GDR Siddha, Ground Floor, N Road Bistupur, Opposite St. Mary's Church, Jamshedpur - 831 001 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation **Business Communication Centre** 2nd Floor, Chiramel Chambers, Kurisupally Road, Ravipuram, Kochi - 682 015 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz & Knudsen Electrical & Automation, 207, 2nd floor, Revolution Complex, Station Road, E Ward, Next to Pedestrian Bridge, **Kolhapur - 416 001** Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation 2nd Floor, BN3, Salt Lake, Sector-V, **Kolkata - 700 091** Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation No.10, Fortuna Towers, 2nd Floor, Rana Pratap Marg, Near NBRI, Lucknow - 226 001 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation El Dorado Building, 3rd Floor, 6, Venkatraman Street, Chinna Chokkikulam, Madurai - 625 002 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Bestech Business Park, Tower - A. 2nd floor, Sector - 66 Mohali - 160059 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation TC II, Tower B, PRIMA BAY Gate No. 5, Saki Vihar Road Powai, Mumbai - 400 072 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Unnati Building, 2nd Floor, Automation Campus, A-600, TTC Industrial Area Shil-Mahape Road, Mahape, Navi Mumbai - 400 710 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation M1 & M2, Mezzanine Floor, Himalaya Excellency, Plot No. C-47, Pratap Nagar Square, Nagpur - 440 022 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation, 3rd floor, Uttam Tower by Viraj Estate, Sharanpur Road, Nasik - 422 002 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation A-25, 1st Floor, Imperia Complex. Mohan Corporative Industrial Estate, Near Sarita Vihar Metro Station, Mathura Road, New Delhi - 110 044 Phone no: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation A06/A07, Second Floor, Grand Chandra Complex, Frazer Road Patna - 800 001 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation UrbanWrk, 5th Floor, Sai Radhe, Raja Bahadur Mill Road, Behind Hotel Grand Sheraton, Sangamwadi Pune - 411 001 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Office No. 211 & 212, Pithalia Plaza, KK Road, Near Fafadih Chowk, Raipur - 492 001 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation, DevX 4th Floor, A Wing, Om 9 Square, 150 Ft Ring Road, Near Nana Mava Circle, Opp Silver Heights, Rajkot - 360 001 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation 10th Floor, Titaanium Business, Bhimrad Road, Althan Surat - 395 017 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation 11th Floor, Block-D, Notus IT Park, Sarabhai Campus, Bhailal Amin Marg. Vadodara - 390 023 Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Lauritz Knudsen Electrical & Automation Naga Chambers, 3rd Floor, D/No. 12-1-16, Plot No. 49, Survey No. 1051, Waltair Main Road, **Visakhapatnam - 530 002** Phone No: 022-6932 7800 e-mail: CIC@LK-EA.com Product improvement is a continuous process. For the latest information and special application, please contact any of our offices listed here. Product photographs shown for representative purpose only. Lauritz Knudsen Electrical & Automation, Electrical Standard Product A/600, Shil-Mahape Road, TTC Industrial Area, MIDC Thane, Navi Mumbai, 400 710, Maharashtra, Phone No: 022-6722 6300 | Web: www.LK-EA.com Customer Interaction Center (CIC) Phone no: 022-6932 7800 Web: www.LK-EA.com | e-mail: CIC@LK-EA.com